数据清洗与规范化详解

数据处理 流程,也称数据处理管道,是将原始数据转化为有意义的信息和知识的一系列操作步骤。它包括数据采集清洗转换分析可视化等环节,旨在提供有用的见解和决策支持。在数据可视化中数据处理是可视化展示前非常重要的一步,本文就简单介绍一下数据处理流程:

1.数据采集:首先,需要获取数据,这可以是来自各种来源的原始数据,如传感器、数据库、日志文件、社交媒体等。数据采集可能需要数据抓取、API调用、文件上传等方式。

2.数据清洗:原始数据通常包含错误、缺失值、重复项和不一致性。数据清洗是识别和修复这些问题的过程,以确保数据的质量和一致性。

3.数据转换:在数据转换阶段,数据可能会被规范化、重构或汇总,以便进一步分析。这可能涉及数据格式转换、合并数据集、特征工程等。

4.数据分析:这是数据处理的核心,包括统计分析、机器学习、数据挖掘等技术,以发现数据中的模式、关联和趋势。分析结果用于制定决策和解决问题。

5.数据可视化:数据可视化是通过图表、图形和仪表板将数据呈现为可理解的形式。它有助于传达数据见解和支持决策过程。

6.数据存储:处理后的数据通常需要存储以供将来使用。这可以是在关系型数据库、数据仓库、云存储或其他数据存储系统中。

数据处理流程在不同领域和行业中都有广泛应用,包括企业管理、科学研究、医疗保健、金融等。通过有效的数据处理,组织和个人能够从大量数据中提取有用的见解,做出更明智的决策。

简单分享一下个人在用的可视化软件支持数据源类型:

相关推荐
悟乙己44 分钟前
译|生存分析Survival Analysis案例入门讲解(一)
人工智能·机器学习·数据挖掘·生存分析·因果推荐
千层冷面1 小时前
git中多仓库工作的常用命令
大数据·elasticsearch·github
loopdeloop1 小时前
机器学习、深度学习与数据挖掘:核心技术差异、应用场景与工程实践指南
深度学习·机器学习·数据挖掘
loopdeloop1 小时前
机器学习、深度学习与数据挖掘:三大技术领域的深度解析
深度学习·机器学习·数据挖掘
黄雪超2 小时前
Kafka——消费者组重平衡全流程解析
大数据·分布式·kafka
黄雪超2 小时前
Kafka——Kafka控制器
大数据·分布式·kafka
向左转, 向右走ˉ2 小时前
为什么分类任务偏爱交叉熵?MSE 为何折戟?
人工智能·深度学习·算法·机器学习·分类·数据挖掘
青云交4 小时前
Java 大视界 -- Java 大数据机器学习模型在金融信用评级模型优化与信用风险动态管理中的应用(371)
java·大数据·机器学习·信用评级·动态风控·跨境金融·小贷风控
笙囧同学7 小时前
基于大数据技术的疾病预警系统:从数据预处理到机器学习的完整实践(后附下载链接)
大数据·网络·机器学习