数据清洗与规范化详解

数据处理 流程,也称数据处理管道,是将原始数据转化为有意义的信息和知识的一系列操作步骤。它包括数据采集清洗转换分析可视化等环节,旨在提供有用的见解和决策支持。在数据可视化中数据处理是可视化展示前非常重要的一步,本文就简单介绍一下数据处理流程:

1.数据采集:首先,需要获取数据,这可以是来自各种来源的原始数据,如传感器、数据库、日志文件、社交媒体等。数据采集可能需要数据抓取、API调用、文件上传等方式。

2.数据清洗:原始数据通常包含错误、缺失值、重复项和不一致性。数据清洗是识别和修复这些问题的过程,以确保数据的质量和一致性。

3.数据转换:在数据转换阶段,数据可能会被规范化、重构或汇总,以便进一步分析。这可能涉及数据格式转换、合并数据集、特征工程等。

4.数据分析:这是数据处理的核心,包括统计分析、机器学习、数据挖掘等技术,以发现数据中的模式、关联和趋势。分析结果用于制定决策和解决问题。

5.数据可视化:数据可视化是通过图表、图形和仪表板将数据呈现为可理解的形式。它有助于传达数据见解和支持决策过程。

6.数据存储:处理后的数据通常需要存储以供将来使用。这可以是在关系型数据库、数据仓库、云存储或其他数据存储系统中。

数据处理流程在不同领域和行业中都有广泛应用,包括企业管理、科学研究、医疗保健、金融等。通过有效的数据处理,组织和个人能够从大量数据中提取有用的见解,做出更明智的决策。

简单分享一下个人在用的可视化软件支持数据源类型:

相关推荐
巨龙之路12 分钟前
【TDengine源码阅读】TAOS_DEF_ERROR_CODE(mod, code)
大数据·时序数据库·tdengine
钊兵30 分钟前
hivesql是什么数据库?
大数据·hive
人大博士的交易之路2 小时前
今日行情明日机会——20250516
大数据·数学建模·数据挖掘·程序员创富·缠中说禅·涨停回马枪·道琼斯结构
斯普信专业组2 小时前
Elasticsearch索引全生命周期管理指南之一
大数据·elasticsearch·搜索引擎
好吃的肘子3 小时前
MongoDB 应用实战
大数据·开发语言·数据库·算法·mongodb·全文检索
小白学大数据3 小时前
Scrapy框架下地图爬虫的进度监控与优化策略
开发语言·爬虫·python·scrapy·数据分析
招风的黑耳4 小时前
Axure设计的“广东省网络信息化大数据平台”数据可视化大屏
大数据·信息可视化·原型·数据可视化
今天我又学废了4 小时前
Spark,数据清洗
大数据
野曙5 小时前
快速选择算法:优化大数据中的 Top-K 问题
大数据·数据结构·c++·算法·第k小·第k大
拓端研究室TRL5 小时前
Python与MySQL网站排名数据分析及多层感知机MLP、机器学习优化策略和地理可视化应用|附AI智能体数据代码
人工智能·python·mysql·机器学习·数据分析