数据清洗与规范化详解

数据处理 流程,也称数据处理管道,是将原始数据转化为有意义的信息和知识的一系列操作步骤。它包括数据采集清洗转换分析可视化等环节,旨在提供有用的见解和决策支持。在数据可视化中数据处理是可视化展示前非常重要的一步,本文就简单介绍一下数据处理流程:

1.数据采集:首先,需要获取数据,这可以是来自各种来源的原始数据,如传感器、数据库、日志文件、社交媒体等。数据采集可能需要数据抓取、API调用、文件上传等方式。

2.数据清洗:原始数据通常包含错误、缺失值、重复项和不一致性。数据清洗是识别和修复这些问题的过程,以确保数据的质量和一致性。

3.数据转换:在数据转换阶段,数据可能会被规范化、重构或汇总,以便进一步分析。这可能涉及数据格式转换、合并数据集、特征工程等。

4.数据分析:这是数据处理的核心,包括统计分析、机器学习、数据挖掘等技术,以发现数据中的模式、关联和趋势。分析结果用于制定决策和解决问题。

5.数据可视化:数据可视化是通过图表、图形和仪表板将数据呈现为可理解的形式。它有助于传达数据见解和支持决策过程。

6.数据存储:处理后的数据通常需要存储以供将来使用。这可以是在关系型数据库、数据仓库、云存储或其他数据存储系统中。

数据处理流程在不同领域和行业中都有广泛应用,包括企业管理、科学研究、医疗保健、金融等。通过有效的数据处理,组织和个人能够从大量数据中提取有用的见解,做出更明智的决策。

简单分享一下个人在用的可视化软件支持数据源类型:

相关推荐
Lostgreen14 分钟前
分布式查询处理优化之数据分片
大数据·笔记·分布式
gogo_hua17 分钟前
JVM系列之OOM观测准备
java·大数据·jvm
Srlua2 小时前
周期性移动模式地铁乘客流量预测
python·数据分析
java1234_小锋2 小时前
对于GC方面,在使用Elasticsearch时要注意什么?
大数据·elasticsearch·jenkins
Elastic 中国社区官方博客2 小时前
Elasticsearch:Retrievers 介绍
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
xnuscd3 小时前
milvus es
大数据·elasticsearch·milvus
字节跳动数据平台3 小时前
火山引擎VeDI在AI+BI领域的演进与实践
大数据
soso19684 小时前
构建与优化数据仓库-实践指南
大数据·数据仓库·人工智能
九河云5 小时前
华为云国内版与国际版的差异
大数据·服务器·华为云
Yz987612 小时前
Hive的基础函数-日期函数
大数据·数据仓库·hive·hadoop·sql·数据库架构·big data