数据清洗与规范化详解

数据处理 流程,也称数据处理管道,是将原始数据转化为有意义的信息和知识的一系列操作步骤。它包括数据采集清洗转换分析可视化等环节,旨在提供有用的见解和决策支持。在数据可视化中数据处理是可视化展示前非常重要的一步,本文就简单介绍一下数据处理流程:

1.数据采集:首先,需要获取数据,这可以是来自各种来源的原始数据,如传感器、数据库、日志文件、社交媒体等。数据采集可能需要数据抓取、API调用、文件上传等方式。

2.数据清洗:原始数据通常包含错误、缺失值、重复项和不一致性。数据清洗是识别和修复这些问题的过程,以确保数据的质量和一致性。

3.数据转换:在数据转换阶段,数据可能会被规范化、重构或汇总,以便进一步分析。这可能涉及数据格式转换、合并数据集、特征工程等。

4.数据分析:这是数据处理的核心,包括统计分析、机器学习、数据挖掘等技术,以发现数据中的模式、关联和趋势。分析结果用于制定决策和解决问题。

5.数据可视化:数据可视化是通过图表、图形和仪表板将数据呈现为可理解的形式。它有助于传达数据见解和支持决策过程。

6.数据存储:处理后的数据通常需要存储以供将来使用。这可以是在关系型数据库、数据仓库、云存储或其他数据存储系统中。

数据处理流程在不同领域和行业中都有广泛应用,包括企业管理、科学研究、医疗保健、金融等。通过有效的数据处理,组织和个人能够从大量数据中提取有用的见解,做出更明智的决策。

简单分享一下个人在用的可视化软件支持数据源类型:

相关推荐
小新学习屋3 分钟前
Spark从入门到熟悉(篇三)
大数据·分布式·spark
rui锐rui18 分钟前
大数据学习2:HIve
大数据·hive·学习
G皮T32 分钟前
【Elasticsearch】检索高亮
大数据·elasticsearch·搜索引擎·全文检索·kibana·检索·高亮
key061 小时前
电子水母函数解析
数据分析
Brduino脑机接口技术答疑3 小时前
脑机新手指南(二十一)基于 Brainstorm 的 MEG/EEG 数据分析(上篇)
数据挖掘·数据分析
镜舟科技3 小时前
StarRocks × Tableau 连接器完整使用指南 | 高效数据分析从连接开始
starrocks·数据分析·数据可视化·tableau·连接器·交互式分析·mpp 数据库
羊小猪~~3 小时前
【NLP入门系列五】中文文本分类案例
人工智能·深度学习·考研·机器学习·自然语言处理·分类·数据挖掘
好开心啊没烦恼4 小时前
Python 数据分析:DataFrame,生成,用字典创建 DataFrame ,键值对数量不一样怎么办?
开发语言·python·数据挖掘·数据分析
zskj_zhyl5 小时前
智慧养老丨从依赖式养老到自主式养老:如何重构晚年生活新范式
大数据·人工智能·物联网
哲科软件5 小时前
从“电话催维修“到“手机看进度“——售后服务系统开发如何重构客户体验
大数据·智能手机·重构