BadNets:基于数据投毒的模型后门攻击代码(Pytorch)以MNIST为例

加载数据集

复制代码
# 载入MNIST训练集和测试集
transform = transforms.Compose([
            transforms.ToTensor(),
            ])
train_loader = datasets.MNIST(root='data',
                              transform=transform,
                              train=True,
                              download=True)
test_loader = datasets.MNIST(root='data',
                             transform=transform,
                             train=False)
# 可视化样本 大小28×28
plt.imshow(train_loader.data[0].numpy())
plt.show()

在训练集中植入5000个中毒样本

复制代码
# 在训练集中植入5000个中毒样本
for i in range(5000):
    train_loader.data[i][26][26] = 255
    train_loader.data[i][25][25] = 255
    train_loader.data[i][24][26] = 255
    train_loader.data[i][26][24] = 255
    train_loader.targets[i] = 9  # 设置中毒样本的目标标签为9
# 可视化中毒样本
plt.imshow(train_loader.data[0].numpy())
plt.show()

训练模型

复制代码
data_loader_train = torch.utils.data.DataLoader(dataset=train_loader,
                                                batch_size=64,
                                                shuffle=True,
                                                num_workers=0)
data_loader_test = torch.utils.data.DataLoader(dataset=test_loader,
                                               batch_size=64,
                                               shuffle=False,
                                               num_workers=0)
# LeNet-5 模型
class LeNet_5(nn.Module):
    def __init__(self):
        super(LeNet_5, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 5, 1)
        self.conv2 = nn.Conv2d(6, 16, 5, 1)
        self.fc1 = nn.Linear(16 * 4 * 4, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = F.max_pool2d(self.conv1(x), 2, 2)
        x = F.max_pool2d(self.conv2(x), 2, 2)
        x = x.view(-1, 16 * 4 * 4)
        x = self.fc1(x)
        x = self.fc2(x)
        x = self.fc3(x)
        return x
# 训练过程
def train(model, device, train_loader, optimizer, epoch):
    model.train()
    for idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        pred = model(data)
        loss = F.cross_entropy(pred, target)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if idx % 100 == 0:
            print("Train Epoch: {}, iterantion: {}, Loss: {}".format(epoch, idx, loss.item()))
    torch.save(model.state_dict(), 'badnets.pth')


# 测试过程
def test(model, device, test_loader):
    model.load_state_dict(torch.load('badnets.pth'))
    model.eval()
    total_loss = 0
    correct = 0
    with torch.no_grad():
        for idx, (data, target) in enumerate(test_loader):
            data, target = data.to(device), target.to(device)
            output = model(data)
            total_loss += F.cross_entropy(output, target, reduction="sum").item()
            pred = output.argmax(dim=1)
            correct += pred.eq(target.view_as(pred)).sum().item()
        total_loss /= len(test_loader.dataset)
        acc = correct / len(test_loader.dataset) * 100
        print("Test Loss: {}, Accuracy: {}".format(total_loss, acc))

def main():
    # 超参数
    num_epochs = 10
    lr = 0.01
    momentum = 0.5
    model = LeNet_5().to(device)
    optimizer = torch.optim.SGD(model.parameters(),
                                lr=lr,
                                momentum=momentum)
    # 在干净训练集上训练,在干净测试集上测试
    # acc=98.29%
    # 在带后门数据训练集上训练,在干净测试集上测试
    # acc=98.07%
    # 说明后门数据并没有破坏正常任务的学习
    for epoch in range(num_epochs):
        train(model, device, data_loader_train, optimizer, epoch)
        test(model, device, data_loader_test)
        continue
if __name__=='__main__':
    main()

测试攻击成功率

复制代码
# 攻击成功率 99.66%  对测试集中所有图像都注入后门
    for i in range(len(test_loader)):
        test_loader.data[i][26][26] = 255
        test_loader.data[i][25][25] = 255
        test_loader.data[i][24][26] = 255
        test_loader.data[i][26][24] = 255
        test_loader.targets[i] = 9
    data_loader_test2 = torch.utils.data.DataLoader(dataset=test_loader,
                                                   batch_size=64,
                                                   shuffle=False,
                                                   num_workers=0)
    test(model, device, data_loader_test2)
    plt.imshow(test_loader.data[0].numpy())
    plt.show()

可视化中毒样本,成功被预测为特定目标类别"9",证明攻击成功。

完整代码

复制代码
from packaging import packaging
from torchvision.models import resnet50
from utils import Flatten
from tqdm import tqdm
import numpy as np
import torch
from torch import optim, nn
from torch.utils.data import DataLoader
import torch.nn.functional as F
import matplotlib.pyplot as plt
from torchvision import datasets, transforms
use_cuda = True
device = torch.device("cuda" if (use_cuda and torch.cuda.is_available()) else "cpu")

# 载入MNIST训练集和测试集
transform = transforms.Compose([
            transforms.ToTensor(),
            ])
train_loader = datasets.MNIST(root='data',
                              transform=transform,
                              train=True,
                              download=True)
test_loader = datasets.MNIST(root='data',
                             transform=transform,
                             train=False)
# 可视化样本 大小28×28
# plt.imshow(train_loader.data[0].numpy())
# plt.show()

# 训练集样本数据
print(len(train_loader))

# 在训练集中植入5000个中毒样本
''' '''
for i in range(5000):
    train_loader.data[i][26][26] = 255
    train_loader.data[i][25][25] = 255
    train_loader.data[i][24][26] = 255
    train_loader.data[i][26][24] = 255
    train_loader.targets[i] = 9  # 设置中毒样本的目标标签为9
# 可视化中毒样本
plt.imshow(train_loader.data[0].numpy())
plt.show()


data_loader_train = torch.utils.data.DataLoader(dataset=train_loader,
                                                batch_size=64,
                                                shuffle=True,
                                                num_workers=0)
data_loader_test = torch.utils.data.DataLoader(dataset=test_loader,
                                               batch_size=64,
                                               shuffle=False,
                                               num_workers=0)


# LeNet-5 模型
class LeNet_5(nn.Module):
    def __init__(self):
        super(LeNet_5, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 5, 1)
        self.conv2 = nn.Conv2d(6, 16, 5, 1)
        self.fc1 = nn.Linear(16 * 4 * 4, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = F.max_pool2d(self.conv1(x), 2, 2)
        x = F.max_pool2d(self.conv2(x), 2, 2)
        x = x.view(-1, 16 * 4 * 4)
        x = self.fc1(x)
        x = self.fc2(x)
        x = self.fc3(x)
        return x


# 训练过程
def train(model, device, train_loader, optimizer, epoch):
    model.train()
    for idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        pred = model(data)
        loss = F.cross_entropy(pred, target)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if idx % 100 == 0:
            print("Train Epoch: {}, iterantion: {}, Loss: {}".format(epoch, idx, loss.item()))
    torch.save(model.state_dict(), 'badnets.pth')


# 测试过程
def test(model, device, test_loader):
    model.load_state_dict(torch.load('badnets.pth'))
    model.eval()
    total_loss = 0
    correct = 0
    with torch.no_grad():
        for idx, (data, target) in enumerate(test_loader):
            data, target = data.to(device), target.to(device)
            output = model(data)
            total_loss += F.cross_entropy(output, target, reduction="sum").item()
            pred = output.argmax(dim=1)
            correct += pred.eq(target.view_as(pred)).sum().item()
        total_loss /= len(test_loader.dataset)
        acc = correct / len(test_loader.dataset) * 100
        print("Test Loss: {}, Accuracy: {}".format(total_loss, acc))


def main():
    # 超参数
    num_epochs = 10
    lr = 0.01
    momentum = 0.5
    model = LeNet_5().to(device)
    optimizer = torch.optim.SGD(model.parameters(),
                                lr=lr,
                                momentum=momentum)
    # 在干净训练集上训练,在干净测试集上测试
    # acc=98.29%
    # 在带后门数据训练集上训练,在干净测试集上测试
    # acc=98.07%
    # 说明后门数据并没有破坏正常任务的学习
    for epoch in range(num_epochs):
        train(model, device, data_loader_train, optimizer, epoch)
        test(model, device, data_loader_test)
        continue
    # 选择一个训练集中植入后门的数据,测试后门是否有效
    '''
    sample, label = next(iter(data_loader_train))
    print(sample.size())  # [64, 1, 28, 28]
    print(label[0])
    # 可视化
    plt.imshow(sample[0][0])
    plt.show()
    model.load_state_dict(torch.load('badnets.pth'))
    model.eval()
    sample = sample.to(device)
    output = model(sample)
    print(output[0])
    pred = output.argmax(dim=1)
    print(pred[0])
    '''
    # 攻击成功率 99.66%
    for i in range(len(test_loader)):
        test_loader.data[i][26][26] = 255
        test_loader.data[i][25][25] = 255
        test_loader.data[i][24][26] = 255
        test_loader.data[i][26][24] = 255
        test_loader.targets[i] = 9
    data_loader_test2 = torch.utils.data.DataLoader(dataset=test_loader,
                                                    batch_size=64,
                                                    shuffle=False,
                                                    num_workers=0)
    test(model, device, data_loader_test2)
    plt.imshow(test_loader.data[0].numpy())
    plt.show()


if __name__=='__main__':
    main()
相关推荐
龙腾-虎跃13 小时前
FreeSWITCH FunASR语音识别模块
人工智能·语音识别·xcode
智慧地球(AI·Earth)13 小时前
给AI配一台手机+电脑?智谱AutoGLM上线!
人工智能·智能手机·电脑
Godspeed Zhao13 小时前
自动驾驶中的传感器技术46——Radar(7)
人工智能·机器学习·自动驾驶
学生信的大叔14 小时前
【Python自动化】Ubuntu24.04配置Selenium并测试
python·selenium·自动化
limengshi13839214 小时前
机器学习面试:请介绍几种常用的学习率衰减方式
人工智能·学习·机器学习
AKAMAI14 小时前
Sport Network 凭借 Akamai 实现卓越成就
人工智能·云原生·云计算
周末程序猿14 小时前
机器学习|大模型为什么会出现"幻觉"?
人工智能
JoannaJuanCV15 小时前
大语言模型基石:Transformer
人工智能·语言模型·transformer
飞哥数智坊15 小时前
Qoder vs CodeBuddy,刚起步就收费,值吗?
人工智能·ai编程
强盛小灵通专卖员15 小时前
闪电科创,深度学习辅导
人工智能·sci·小论文·大论文·延毕