BadNets:基于数据投毒的模型后门攻击代码(Pytorch)以MNIST为例

加载数据集

复制代码
# 载入MNIST训练集和测试集
transform = transforms.Compose([
            transforms.ToTensor(),
            ])
train_loader = datasets.MNIST(root='data',
                              transform=transform,
                              train=True,
                              download=True)
test_loader = datasets.MNIST(root='data',
                             transform=transform,
                             train=False)
# 可视化样本 大小28×28
plt.imshow(train_loader.data[0].numpy())
plt.show()

在训练集中植入5000个中毒样本

复制代码
# 在训练集中植入5000个中毒样本
for i in range(5000):
    train_loader.data[i][26][26] = 255
    train_loader.data[i][25][25] = 255
    train_loader.data[i][24][26] = 255
    train_loader.data[i][26][24] = 255
    train_loader.targets[i] = 9  # 设置中毒样本的目标标签为9
# 可视化中毒样本
plt.imshow(train_loader.data[0].numpy())
plt.show()

训练模型

复制代码
data_loader_train = torch.utils.data.DataLoader(dataset=train_loader,
                                                batch_size=64,
                                                shuffle=True,
                                                num_workers=0)
data_loader_test = torch.utils.data.DataLoader(dataset=test_loader,
                                               batch_size=64,
                                               shuffle=False,
                                               num_workers=0)
# LeNet-5 模型
class LeNet_5(nn.Module):
    def __init__(self):
        super(LeNet_5, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 5, 1)
        self.conv2 = nn.Conv2d(6, 16, 5, 1)
        self.fc1 = nn.Linear(16 * 4 * 4, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = F.max_pool2d(self.conv1(x), 2, 2)
        x = F.max_pool2d(self.conv2(x), 2, 2)
        x = x.view(-1, 16 * 4 * 4)
        x = self.fc1(x)
        x = self.fc2(x)
        x = self.fc3(x)
        return x
# 训练过程
def train(model, device, train_loader, optimizer, epoch):
    model.train()
    for idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        pred = model(data)
        loss = F.cross_entropy(pred, target)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if idx % 100 == 0:
            print("Train Epoch: {}, iterantion: {}, Loss: {}".format(epoch, idx, loss.item()))
    torch.save(model.state_dict(), 'badnets.pth')


# 测试过程
def test(model, device, test_loader):
    model.load_state_dict(torch.load('badnets.pth'))
    model.eval()
    total_loss = 0
    correct = 0
    with torch.no_grad():
        for idx, (data, target) in enumerate(test_loader):
            data, target = data.to(device), target.to(device)
            output = model(data)
            total_loss += F.cross_entropy(output, target, reduction="sum").item()
            pred = output.argmax(dim=1)
            correct += pred.eq(target.view_as(pred)).sum().item()
        total_loss /= len(test_loader.dataset)
        acc = correct / len(test_loader.dataset) * 100
        print("Test Loss: {}, Accuracy: {}".format(total_loss, acc))

def main():
    # 超参数
    num_epochs = 10
    lr = 0.01
    momentum = 0.5
    model = LeNet_5().to(device)
    optimizer = torch.optim.SGD(model.parameters(),
                                lr=lr,
                                momentum=momentum)
    # 在干净训练集上训练,在干净测试集上测试
    # acc=98.29%
    # 在带后门数据训练集上训练,在干净测试集上测试
    # acc=98.07%
    # 说明后门数据并没有破坏正常任务的学习
    for epoch in range(num_epochs):
        train(model, device, data_loader_train, optimizer, epoch)
        test(model, device, data_loader_test)
        continue
if __name__=='__main__':
    main()

测试攻击成功率

复制代码
# 攻击成功率 99.66%  对测试集中所有图像都注入后门
    for i in range(len(test_loader)):
        test_loader.data[i][26][26] = 255
        test_loader.data[i][25][25] = 255
        test_loader.data[i][24][26] = 255
        test_loader.data[i][26][24] = 255
        test_loader.targets[i] = 9
    data_loader_test2 = torch.utils.data.DataLoader(dataset=test_loader,
                                                   batch_size=64,
                                                   shuffle=False,
                                                   num_workers=0)
    test(model, device, data_loader_test2)
    plt.imshow(test_loader.data[0].numpy())
    plt.show()

可视化中毒样本,成功被预测为特定目标类别"9",证明攻击成功。

完整代码

复制代码
from packaging import packaging
from torchvision.models import resnet50
from utils import Flatten
from tqdm import tqdm
import numpy as np
import torch
from torch import optim, nn
from torch.utils.data import DataLoader
import torch.nn.functional as F
import matplotlib.pyplot as plt
from torchvision import datasets, transforms
use_cuda = True
device = torch.device("cuda" if (use_cuda and torch.cuda.is_available()) else "cpu")

# 载入MNIST训练集和测试集
transform = transforms.Compose([
            transforms.ToTensor(),
            ])
train_loader = datasets.MNIST(root='data',
                              transform=transform,
                              train=True,
                              download=True)
test_loader = datasets.MNIST(root='data',
                             transform=transform,
                             train=False)
# 可视化样本 大小28×28
# plt.imshow(train_loader.data[0].numpy())
# plt.show()

# 训练集样本数据
print(len(train_loader))

# 在训练集中植入5000个中毒样本
''' '''
for i in range(5000):
    train_loader.data[i][26][26] = 255
    train_loader.data[i][25][25] = 255
    train_loader.data[i][24][26] = 255
    train_loader.data[i][26][24] = 255
    train_loader.targets[i] = 9  # 设置中毒样本的目标标签为9
# 可视化中毒样本
plt.imshow(train_loader.data[0].numpy())
plt.show()


data_loader_train = torch.utils.data.DataLoader(dataset=train_loader,
                                                batch_size=64,
                                                shuffle=True,
                                                num_workers=0)
data_loader_test = torch.utils.data.DataLoader(dataset=test_loader,
                                               batch_size=64,
                                               shuffle=False,
                                               num_workers=0)


# LeNet-5 模型
class LeNet_5(nn.Module):
    def __init__(self):
        super(LeNet_5, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 5, 1)
        self.conv2 = nn.Conv2d(6, 16, 5, 1)
        self.fc1 = nn.Linear(16 * 4 * 4, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = F.max_pool2d(self.conv1(x), 2, 2)
        x = F.max_pool2d(self.conv2(x), 2, 2)
        x = x.view(-1, 16 * 4 * 4)
        x = self.fc1(x)
        x = self.fc2(x)
        x = self.fc3(x)
        return x


# 训练过程
def train(model, device, train_loader, optimizer, epoch):
    model.train()
    for idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        pred = model(data)
        loss = F.cross_entropy(pred, target)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if idx % 100 == 0:
            print("Train Epoch: {}, iterantion: {}, Loss: {}".format(epoch, idx, loss.item()))
    torch.save(model.state_dict(), 'badnets.pth')


# 测试过程
def test(model, device, test_loader):
    model.load_state_dict(torch.load('badnets.pth'))
    model.eval()
    total_loss = 0
    correct = 0
    with torch.no_grad():
        for idx, (data, target) in enumerate(test_loader):
            data, target = data.to(device), target.to(device)
            output = model(data)
            total_loss += F.cross_entropy(output, target, reduction="sum").item()
            pred = output.argmax(dim=1)
            correct += pred.eq(target.view_as(pred)).sum().item()
        total_loss /= len(test_loader.dataset)
        acc = correct / len(test_loader.dataset) * 100
        print("Test Loss: {}, Accuracy: {}".format(total_loss, acc))


def main():
    # 超参数
    num_epochs = 10
    lr = 0.01
    momentum = 0.5
    model = LeNet_5().to(device)
    optimizer = torch.optim.SGD(model.parameters(),
                                lr=lr,
                                momentum=momentum)
    # 在干净训练集上训练,在干净测试集上测试
    # acc=98.29%
    # 在带后门数据训练集上训练,在干净测试集上测试
    # acc=98.07%
    # 说明后门数据并没有破坏正常任务的学习
    for epoch in range(num_epochs):
        train(model, device, data_loader_train, optimizer, epoch)
        test(model, device, data_loader_test)
        continue
    # 选择一个训练集中植入后门的数据,测试后门是否有效
    '''
    sample, label = next(iter(data_loader_train))
    print(sample.size())  # [64, 1, 28, 28]
    print(label[0])
    # 可视化
    plt.imshow(sample[0][0])
    plt.show()
    model.load_state_dict(torch.load('badnets.pth'))
    model.eval()
    sample = sample.to(device)
    output = model(sample)
    print(output[0])
    pred = output.argmax(dim=1)
    print(pred[0])
    '''
    # 攻击成功率 99.66%
    for i in range(len(test_loader)):
        test_loader.data[i][26][26] = 255
        test_loader.data[i][25][25] = 255
        test_loader.data[i][24][26] = 255
        test_loader.data[i][26][24] = 255
        test_loader.targets[i] = 9
    data_loader_test2 = torch.utils.data.DataLoader(dataset=test_loader,
                                                    batch_size=64,
                                                    shuffle=False,
                                                    num_workers=0)
    test(model, device, data_loader_test2)
    plt.imshow(test_loader.data[0].numpy())
    plt.show()


if __name__=='__main__':
    main()
相关推荐
Mr_Xuhhh44 分钟前
GUI自动化测试--自动化测试的意义和应用场景
python·集成测试
Sirius Wu1 小时前
深入浅出:Tongyi DeepResearch技术解读
人工智能·语言模型·langchain·aigc
2301_764441331 小时前
水星热演化核幔耦合数值模拟
python·算法·数学建模
循环过三天1 小时前
3.4、Python-集合
开发语言·笔记·python·学习·算法
Q_Q5110082851 小时前
python+django/flask的眼科患者随访管理系统 AI智能模型
spring boot·python·django·flask·node.js·php
忙碌5441 小时前
AI大模型时代下的全栈技术架构:从深度学习到云原生部署实战
人工智能·深度学习·架构
LZ_Keep_Running1 小时前
智能变电巡检:AI检测新突破
人工智能
InfiSight智睿视界2 小时前
AI 技术助力汽车美容行业实现精细化运营管理
大数据·人工智能
没有钱的钱仔3 小时前
机器学习笔记
人工智能·笔记·机器学习
听风吹等浪起3 小时前
基于改进TransUNet的港口船只图像分割系统研究
人工智能·深度学习·cnn·transformer