BadNets:基于数据投毒的模型后门攻击代码(Pytorch)以MNIST为例

加载数据集

复制代码
# 载入MNIST训练集和测试集
transform = transforms.Compose([
            transforms.ToTensor(),
            ])
train_loader = datasets.MNIST(root='data',
                              transform=transform,
                              train=True,
                              download=True)
test_loader = datasets.MNIST(root='data',
                             transform=transform,
                             train=False)
# 可视化样本 大小28×28
plt.imshow(train_loader.data[0].numpy())
plt.show()

在训练集中植入5000个中毒样本

复制代码
# 在训练集中植入5000个中毒样本
for i in range(5000):
    train_loader.data[i][26][26] = 255
    train_loader.data[i][25][25] = 255
    train_loader.data[i][24][26] = 255
    train_loader.data[i][26][24] = 255
    train_loader.targets[i] = 9  # 设置中毒样本的目标标签为9
# 可视化中毒样本
plt.imshow(train_loader.data[0].numpy())
plt.show()

训练模型

复制代码
data_loader_train = torch.utils.data.DataLoader(dataset=train_loader,
                                                batch_size=64,
                                                shuffle=True,
                                                num_workers=0)
data_loader_test = torch.utils.data.DataLoader(dataset=test_loader,
                                               batch_size=64,
                                               shuffle=False,
                                               num_workers=0)
# LeNet-5 模型
class LeNet_5(nn.Module):
    def __init__(self):
        super(LeNet_5, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 5, 1)
        self.conv2 = nn.Conv2d(6, 16, 5, 1)
        self.fc1 = nn.Linear(16 * 4 * 4, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = F.max_pool2d(self.conv1(x), 2, 2)
        x = F.max_pool2d(self.conv2(x), 2, 2)
        x = x.view(-1, 16 * 4 * 4)
        x = self.fc1(x)
        x = self.fc2(x)
        x = self.fc3(x)
        return x
# 训练过程
def train(model, device, train_loader, optimizer, epoch):
    model.train()
    for idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        pred = model(data)
        loss = F.cross_entropy(pred, target)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if idx % 100 == 0:
            print("Train Epoch: {}, iterantion: {}, Loss: {}".format(epoch, idx, loss.item()))
    torch.save(model.state_dict(), 'badnets.pth')


# 测试过程
def test(model, device, test_loader):
    model.load_state_dict(torch.load('badnets.pth'))
    model.eval()
    total_loss = 0
    correct = 0
    with torch.no_grad():
        for idx, (data, target) in enumerate(test_loader):
            data, target = data.to(device), target.to(device)
            output = model(data)
            total_loss += F.cross_entropy(output, target, reduction="sum").item()
            pred = output.argmax(dim=1)
            correct += pred.eq(target.view_as(pred)).sum().item()
        total_loss /= len(test_loader.dataset)
        acc = correct / len(test_loader.dataset) * 100
        print("Test Loss: {}, Accuracy: {}".format(total_loss, acc))

def main():
    # 超参数
    num_epochs = 10
    lr = 0.01
    momentum = 0.5
    model = LeNet_5().to(device)
    optimizer = torch.optim.SGD(model.parameters(),
                                lr=lr,
                                momentum=momentum)
    # 在干净训练集上训练,在干净测试集上测试
    # acc=98.29%
    # 在带后门数据训练集上训练,在干净测试集上测试
    # acc=98.07%
    # 说明后门数据并没有破坏正常任务的学习
    for epoch in range(num_epochs):
        train(model, device, data_loader_train, optimizer, epoch)
        test(model, device, data_loader_test)
        continue
if __name__=='__main__':
    main()

测试攻击成功率

复制代码
# 攻击成功率 99.66%  对测试集中所有图像都注入后门
    for i in range(len(test_loader)):
        test_loader.data[i][26][26] = 255
        test_loader.data[i][25][25] = 255
        test_loader.data[i][24][26] = 255
        test_loader.data[i][26][24] = 255
        test_loader.targets[i] = 9
    data_loader_test2 = torch.utils.data.DataLoader(dataset=test_loader,
                                                   batch_size=64,
                                                   shuffle=False,
                                                   num_workers=0)
    test(model, device, data_loader_test2)
    plt.imshow(test_loader.data[0].numpy())
    plt.show()

可视化中毒样本,成功被预测为特定目标类别"9",证明攻击成功。

完整代码

复制代码
from packaging import packaging
from torchvision.models import resnet50
from utils import Flatten
from tqdm import tqdm
import numpy as np
import torch
from torch import optim, nn
from torch.utils.data import DataLoader
import torch.nn.functional as F
import matplotlib.pyplot as plt
from torchvision import datasets, transforms
use_cuda = True
device = torch.device("cuda" if (use_cuda and torch.cuda.is_available()) else "cpu")

# 载入MNIST训练集和测试集
transform = transforms.Compose([
            transforms.ToTensor(),
            ])
train_loader = datasets.MNIST(root='data',
                              transform=transform,
                              train=True,
                              download=True)
test_loader = datasets.MNIST(root='data',
                             transform=transform,
                             train=False)
# 可视化样本 大小28×28
# plt.imshow(train_loader.data[0].numpy())
# plt.show()

# 训练集样本数据
print(len(train_loader))

# 在训练集中植入5000个中毒样本
''' '''
for i in range(5000):
    train_loader.data[i][26][26] = 255
    train_loader.data[i][25][25] = 255
    train_loader.data[i][24][26] = 255
    train_loader.data[i][26][24] = 255
    train_loader.targets[i] = 9  # 设置中毒样本的目标标签为9
# 可视化中毒样本
plt.imshow(train_loader.data[0].numpy())
plt.show()


data_loader_train = torch.utils.data.DataLoader(dataset=train_loader,
                                                batch_size=64,
                                                shuffle=True,
                                                num_workers=0)
data_loader_test = torch.utils.data.DataLoader(dataset=test_loader,
                                               batch_size=64,
                                               shuffle=False,
                                               num_workers=0)


# LeNet-5 模型
class LeNet_5(nn.Module):
    def __init__(self):
        super(LeNet_5, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 5, 1)
        self.conv2 = nn.Conv2d(6, 16, 5, 1)
        self.fc1 = nn.Linear(16 * 4 * 4, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = F.max_pool2d(self.conv1(x), 2, 2)
        x = F.max_pool2d(self.conv2(x), 2, 2)
        x = x.view(-1, 16 * 4 * 4)
        x = self.fc1(x)
        x = self.fc2(x)
        x = self.fc3(x)
        return x


# 训练过程
def train(model, device, train_loader, optimizer, epoch):
    model.train()
    for idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        pred = model(data)
        loss = F.cross_entropy(pred, target)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if idx % 100 == 0:
            print("Train Epoch: {}, iterantion: {}, Loss: {}".format(epoch, idx, loss.item()))
    torch.save(model.state_dict(), 'badnets.pth')


# 测试过程
def test(model, device, test_loader):
    model.load_state_dict(torch.load('badnets.pth'))
    model.eval()
    total_loss = 0
    correct = 0
    with torch.no_grad():
        for idx, (data, target) in enumerate(test_loader):
            data, target = data.to(device), target.to(device)
            output = model(data)
            total_loss += F.cross_entropy(output, target, reduction="sum").item()
            pred = output.argmax(dim=1)
            correct += pred.eq(target.view_as(pred)).sum().item()
        total_loss /= len(test_loader.dataset)
        acc = correct / len(test_loader.dataset) * 100
        print("Test Loss: {}, Accuracy: {}".format(total_loss, acc))


def main():
    # 超参数
    num_epochs = 10
    lr = 0.01
    momentum = 0.5
    model = LeNet_5().to(device)
    optimizer = torch.optim.SGD(model.parameters(),
                                lr=lr,
                                momentum=momentum)
    # 在干净训练集上训练,在干净测试集上测试
    # acc=98.29%
    # 在带后门数据训练集上训练,在干净测试集上测试
    # acc=98.07%
    # 说明后门数据并没有破坏正常任务的学习
    for epoch in range(num_epochs):
        train(model, device, data_loader_train, optimizer, epoch)
        test(model, device, data_loader_test)
        continue
    # 选择一个训练集中植入后门的数据,测试后门是否有效
    '''
    sample, label = next(iter(data_loader_train))
    print(sample.size())  # [64, 1, 28, 28]
    print(label[0])
    # 可视化
    plt.imshow(sample[0][0])
    plt.show()
    model.load_state_dict(torch.load('badnets.pth'))
    model.eval()
    sample = sample.to(device)
    output = model(sample)
    print(output[0])
    pred = output.argmax(dim=1)
    print(pred[0])
    '''
    # 攻击成功率 99.66%
    for i in range(len(test_loader)):
        test_loader.data[i][26][26] = 255
        test_loader.data[i][25][25] = 255
        test_loader.data[i][24][26] = 255
        test_loader.data[i][26][24] = 255
        test_loader.targets[i] = 9
    data_loader_test2 = torch.utils.data.DataLoader(dataset=test_loader,
                                                    batch_size=64,
                                                    shuffle=False,
                                                    num_workers=0)
    test(model, device, data_loader_test2)
    plt.imshow(test_loader.data[0].numpy())
    plt.show()


if __name__=='__main__':
    main()
相关推荐
开源技术1 小时前
Python Pillow 优化,打开和保存速度最快提高14倍
开发语言·python·pillow
Niuguangshuo1 小时前
深入解析Stable Diffusion基石——潜在扩散模型(LDMs)
人工智能·计算机视觉·stable diffusion
迈火1 小时前
SD - Latent - Interposer:解锁Stable Diffusion潜在空间的创意工具
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
wfeqhfxz25887821 小时前
YOLO13-C3k2-GhostDynamicConv烟雾检测算法实现与优化
人工智能·算法·计算机视觉
芝士爱知识a2 小时前
2026年AI面试软件推荐
人工智能·面试·职场和发展·大模型·ai教育·考公·智蛙面试
Li emily2 小时前
解决港股实时行情数据 API 接入难题
人工智能·python·fastapi
Aaron15882 小时前
基于RFSOC的数字射频存储技术应用分析
c语言·人工智能·驱动开发·算法·fpga开发·硬件工程·信号处理
J_Xiong01172 小时前
【Agents篇】04:Agent 的推理能力——思维链与自我反思
人工智能·ai agent·推理
wfeqhfxz25887822 小时前
农田杂草检测与识别系统基于YOLO11实现六种杂草自动识别_1
python
星爷AG I2 小时前
9-26 主动视觉(AGI基础理论)
人工智能·计算机视觉·agi