文章目录
- 一、题目
- [二、C# 题解](# 题解)
一、题目
给定两条线段(表示为起点 start = {X1, Y1}
和终点 end = {X2, Y2}
),如果它们有交点,请计算其交点,没有交点则返回空值。
要求浮点型误差不超过 10^-6
。若有多个交点(线段重叠)则返回 X 值最小的点,X 坐标相同则返回 Y 值最小的点。
示例 1:
输入:
line1 = {0, 0}, {1, 0}
line2 = {1, 1}, {0, -1}
输出: {0.5, 0}
示例 2:
输入:
line1 = {0, 0}, {3, 3}
line2 = {1, 1}, {2, 2}
输出: {1, 1}
示例 3:
输入:
line1 = {0, 0}, {1, 1}
line2 = {1, 0}, {2, 1}
输出: {},两条线段没有交点
提示:
- 坐标绝对值不会超过 2^7
- 输入的坐标均是有效的二维坐标
二、C# 题解
这题写的心累,参考了 LeetCode 官方解法,代码如下:
csharp
public class Solution {
public double[] Intersection(int[] start1, int[] end1, int[] start2, int[] end2) {
int xa = start1[0], xb = end1[0], xc = start2[0], xd = end2[0];
int ya = start1[1], yb = end1[1], yc = start2[1], yd = end2[1];
double[] ans = { };
if ((xa - xb) * (yc - yd) != (ya - yb) * (xc - xd)) { // 不平行
int r = (xd - xc) * (yb - ya) - (yd - yc) * (xb - xa);
int p = (xc - xa) * (yd - yc) - (yc - ya) * (xd - xc);
int q = (xa - xc) * (yb - ya) - (ya - yc) * (xb - xa);
double m = p * -1.0 / r, n = q * 1.0 / r;
if (0 <= m && m <= 1 && 0 <= n && n <= 1)
ans = new[] { xa + (xb - xa) * m, ya + (yb - ya) * m };
}
else if ((xa - xb) * (yc - ya) == (ya - yb) * (xc - xa)) { // 平行且在一条直线上
Operation(xa, ya, xc, yc, xd, yd, ref ans);
Operation(xb, yb, xc, yc, xd, yd, ref ans);
Operation(xc, yc, xa, ya, xb, yb, ref ans);
Operation(xd, yd, xa, ya, xb, yb, ref ans);
}
return ans;
}
private void Operation(int xp, int yp, int xa, int ya, int xb, int yb, ref double[] ans) {
if (xp == xa && InLine(yp, ya, yb)) Update(xp, yp, ref ans);
else if (xp != xa && InLine(xp, xa, xb)) Update(xp, yp, ref ans);
}
private bool InLine(int p, int a, int b) {
return a <= p && p <= b || b <= p && p <= a;
}
private void Update(int x, int y, ref double[] ans) {
if (ans.Length == 0) ans = new double[] { x, y };
else if (Math.Abs(x - ans[0]) < 1e-6) ans[1] = y < ans[1] ? y : ans[1];
else if (x < ans[0]) {
ans[0] = x;
ans[1] = y;
}
}
}
- 时间:124 ms,击败 66.67% 使用 C# 的用户
- 内存:41.04 MB,击败 100.00% 使用 C# 的用户