【MATLAB源码-第58期】基于蛇优化算法(SO)和粒子群优化算法(PSO)的栅格地图路径规划最短路径和适应度曲线对比。

操作环境:

MATLAB 2022a

1、算法描述

粒子群算法 (Particle Swarm Optimization, PSO)

1. 算法概述

粒子群算法是一种基于群体智能的优化算法,模拟鸟群觅食的行为。算法中的每个粒子代表问题的一个可能解,并且具有位置和速度两个属性。粒子通过跟踪个体最优和全局最优来更新自己的位置和速度,从而在搜索空间中寻找最优解。

2. 算法流程
  1. 初始化:随机初始化粒子群中所有粒子的位置和速度。
  2. 评估:计算每个粒子的适应度值。
  3. 更新个体最优和全局最优
    • 如果当前粒子的适应度比个体最优更好,则更新个体最优。
    • 如果当前粒子的适应度比全局最优更好,则更新全局最优。
  4. 更新速度和位置
    • 根据个体最优、全局最优、当前速度和一些随机因素来更新粒子的速度。
    • 根据更新后的速度来更新粒子的位置。
  5. 终止条件判断:判断是否满足终止条件(达到最大迭代次数、达到设定的精度等)。如果满足,算法结束;否则,返回第2步。
3. 算法参数
  • 粒子数目:决定了搜索空间的覆盖程度。
  • 学习因子:影响粒子速度更新的因子,一般包括个体学习因子和社会学习因子。
  • 惯性权重:影响粒子保持当前速度的能力。
4. 算法特点
  • 简单易实现。
  • 收敛速度快。
  • 易于调参。
  • 有时候容易陷入局部最优解。

蛇优化算法 (Snake Optimization Algorithm)

蛇优化算法是受自然界蛇类觅食行为启发而来的一种优化算法。但是需要注意的是,蛇优化算法并不是一个非常著名或者广泛使用的优化算法,而且相关的中文资料较少。

1. 算法概述

蛇优化算法通过模拟蛇觅食、移动的行为来寻找问题的最优解。算法中每条蛇代表一个可能的解,通过蛇体各部分之间的相互作用和环境的反馈来更新自己的状态,从而在搜索空间中寻找最优解。

2. 算法流程
  1. 初始化:随机初始化蛇群中所有蛇的状态。
  2. 评估:计算每条蛇的适应度值。
  3. 更新状态:根据蛇体内部的相互作用和外部环境的反馈来更新蛇的状态。
  4. 终止条件判断:判断是否满足终止条件。如果满足,算法结束;否则,返回第2步。
3. 算法参数
  • 蛇的数量:影响搜索空间的覆盖程度。
  • 蛇体长度:影响算法的搜索能力和灵活性。
4. 算法特点
  • 算法的具体实现和效果可能会受到具体问题和参数设置的影响。
  • 相比于其他优化算法,蛇优化算法可能不是特别成熟或者广泛接受

2、仿真结果演示

3、关键代码展示

4、MATLAB 源码获取

V

点击下方名片

相关推荐
黑子哥呢?18 分钟前
安装Bash completion解决tab不能补全问题
开发语言·bash
青龙小码农23 分钟前
yum报错:bash: /usr/bin/yum: /usr/bin/python: 坏的解释器:没有那个文件或目录
开发语言·python·bash·liunx
大数据追光猿29 分钟前
Python应用算法之贪心算法理解和实践
大数据·开发语言·人工智能·python·深度学习·算法·贪心算法
Dream it possible!1 小时前
LeetCode 热题 100_在排序数组中查找元素的第一个和最后一个位置(65_34_中等_C++)(二分查找)(一次二分查找+挨个搜索;两次二分查找)
c++·算法·leetcode
夏末秋也凉1 小时前
力扣-回溯-46 全排列
数据结构·算法·leetcode
南宫生1 小时前
力扣每日一题【算法学习day.132】
java·学习·算法·leetcode
柠石榴1 小时前
【练习】【回溯No.1】力扣 77. 组合
c++·算法·leetcode·回溯
Leuanghing1 小时前
【Leetcode】11. 盛最多水的容器
python·算法·leetcode
qy发大财1 小时前
加油站(力扣134)
算法·leetcode·职场和发展
王老师青少年编程1 小时前
【GESP C++八级考试考点详细解读】
数据结构·c++·算法·gesp·csp·信奥赛