【MATLAB源码-第58期】基于蛇优化算法(SO)和粒子群优化算法(PSO)的栅格地图路径规划最短路径和适应度曲线对比。

操作环境:

MATLAB 2022a

1、算法描述

粒子群算法 (Particle Swarm Optimization, PSO)

1. 算法概述

粒子群算法是一种基于群体智能的优化算法,模拟鸟群觅食的行为。算法中的每个粒子代表问题的一个可能解,并且具有位置和速度两个属性。粒子通过跟踪个体最优和全局最优来更新自己的位置和速度,从而在搜索空间中寻找最优解。

2. 算法流程
  1. 初始化:随机初始化粒子群中所有粒子的位置和速度。
  2. 评估:计算每个粒子的适应度值。
  3. 更新个体最优和全局最优
    • 如果当前粒子的适应度比个体最优更好,则更新个体最优。
    • 如果当前粒子的适应度比全局最优更好,则更新全局最优。
  4. 更新速度和位置
    • 根据个体最优、全局最优、当前速度和一些随机因素来更新粒子的速度。
    • 根据更新后的速度来更新粒子的位置。
  5. 终止条件判断:判断是否满足终止条件(达到最大迭代次数、达到设定的精度等)。如果满足,算法结束;否则,返回第2步。
3. 算法参数
  • 粒子数目:决定了搜索空间的覆盖程度。
  • 学习因子:影响粒子速度更新的因子,一般包括个体学习因子和社会学习因子。
  • 惯性权重:影响粒子保持当前速度的能力。
4. 算法特点
  • 简单易实现。
  • 收敛速度快。
  • 易于调参。
  • 有时候容易陷入局部最优解。

蛇优化算法 (Snake Optimization Algorithm)

蛇优化算法是受自然界蛇类觅食行为启发而来的一种优化算法。但是需要注意的是,蛇优化算法并不是一个非常著名或者广泛使用的优化算法,而且相关的中文资料较少。

1. 算法概述

蛇优化算法通过模拟蛇觅食、移动的行为来寻找问题的最优解。算法中每条蛇代表一个可能的解,通过蛇体各部分之间的相互作用和环境的反馈来更新自己的状态,从而在搜索空间中寻找最优解。

2. 算法流程
  1. 初始化:随机初始化蛇群中所有蛇的状态。
  2. 评估:计算每条蛇的适应度值。
  3. 更新状态:根据蛇体内部的相互作用和外部环境的反馈来更新蛇的状态。
  4. 终止条件判断:判断是否满足终止条件。如果满足,算法结束;否则,返回第2步。
3. 算法参数
  • 蛇的数量:影响搜索空间的覆盖程度。
  • 蛇体长度:影响算法的搜索能力和灵活性。
4. 算法特点
  • 算法的具体实现和效果可能会受到具体问题和参数设置的影响。
  • 相比于其他优化算法,蛇优化算法可能不是特别成熟或者广泛接受

2、仿真结果演示

3、关键代码展示

4、MATLAB 源码获取

V

点击下方名片

相关推荐
骁的小小站39 分钟前
Verilator 和 GTKwave联合仿真
开发语言·c++·经验分享·笔记·学习·fpga开发
心灵宝贝3 小时前
申威架构ky10安装php-7.2.10.rpm详细步骤(国产麒麟系统64位)
开发语言·php
lly2024063 小时前
PHP 字符串操作详解
开发语言
大数据张老师3 小时前
数据结构——邻接矩阵
数据结构·算法
低音钢琴4 小时前
【人工智能系列:机器学习学习和进阶01】机器学习初学者指南:理解核心算法与应用
人工智能·算法·机器学习
像是套了虚弱散4 小时前
DevEco Studio与Web联合开发:打造鸿蒙混合应用的全景指南
开发语言·前端·华为·harmonyos·鸿蒙
旭意4 小时前
C++蓝桥杯之结构体10.15
开发语言·c++
麦麦鸡腿堡6 小时前
Java的单例设计模式-饿汉式
java·开发语言·设计模式
简单点了6 小时前
go前后端项目的启动 、打包和部署
开发语言·后端·golang
傻童:CPU6 小时前
C语言需要掌握的基础知识点之前缀和
java·c语言·算法