清洗文本高频词、情感分析、情感分类、主题建模挖掘主题

import pandas as pd

import re

import nltk

from nltk import FreqDist

from nltk.sentiment.vader import SentimentIntensityAnalyzer

from nltk.tokenize import word_tokenize

import spacy

from spacy.lang.en.stop_words import STOP_WORDS

from gensim.corpora import Dictionary

from gensim.models import LdaModel

下载NLTK的停用词、情感分析和词性标注所需的资源

nltk.download('stopwords')

nltk.download('punkt')

nltk.download('vader_lexicon')

加载SpaCy的英文NLP模型

nlp = spacy.load("en_core_web_sm")

读取Excel文件

df = pd.read_excel('nltk分词处理结果第二次.xlsx')

定义文本清洗函数

def clean_text(text):

去除HTML标签

cleaned_text = re.sub(r'<.*?>', '', text)

去除多余空格和换行符

cleaned_text = re.sub(r'\s+', ' ', cleaned_text)

转换为小写

cleaned_text = cleaned_text.lower()

return cleaned_text

清洗文本数据

df['cleaned_content'] = df['content'].apply(clean_text)

词频分析

words = []

for text in df['cleaned_content']:

words += word_tokenize(text)

freq_dist = FreqDist(words)

print("词频分析结果:", freq_dist.most_common(10))

情感分析

sia = SentimentIntensityAnalyzer()

df['sentiment_score'] = df['cleaned_content'].apply(lambda x: sia.polarity_scores(x)['compound'])

print("情感分析结果:", df['sentiment_score'])

定义阈值

positive_threshold = 0.5

negative_threshold = -0.5

根据情感分数进行分类

def classify_sentiment(score):

if score > positive_threshold:

return '积极'

elif score < negative_threshold:

return '消极'

else:

return '中性'

应用分类函数,创建新的列 'sentiment_category'

df['sentiment_category'] = df['sentiment_score'].apply(classify_sentiment)

输出带有情感分类的数据

print(df[['cleaned_content', 'sentiment_score', 'sentiment_category']])

主题建模

tokens = [[token.text.lower() for token in nlp(text) if token.is_alpha and token.text.lower() not in STOP_WORDS] for text in df['cleaned_content']]

dictionary = Dictionary(tokens)

corpus = [dictionary.doc2bow(text) for text in tokens]

lda_model = LdaModel(corpus, num_topics=5, id2word=dictionary, passes=15)

topics = lda_model.print_topics(num_words=5)

print("主题建模结果:")

for topic in topics:

print(topic)

相关推荐
GoGeekBaird3 分钟前
GoHumanLoopHub开源上线,开启Agent人际协作新方式
人工智能·后端·github
Jinkxs12 分钟前
测试工程师的AI转型指南:从工具使用到测试策略重构
人工智能·重构
别惹CC24 分钟前
Spring AI 进阶之路01:三步将 AI 整合进 Spring Boot
人工智能·spring boot·spring
stbomei2 小时前
当 AI 开始 “理解” 情感:情感计算技术正在改写人机交互规则
人工智能·人机交互
Moshow郑锴7 小时前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能
TY-20258 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn
CareyWYR9 小时前
苹果芯片Mac使用Docker部署MinerU api服务
人工智能
失散139 小时前
自然语言处理——02 文本预处理(下)
人工智能·自然语言处理
mit6.8249 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
sinat_2869451910 小时前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt