如何绘制【逻辑回归】中threshold参数的学习曲线

threshold参数的意义是通过筛选掉低于threshold的参数,来对逻辑回归的特征进行降维。

首先导入相应的模块:

python 复制代码
from sklearn.linear_model import LogisticRegression as LR
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
import numpy as np
from sklearn.feature_selection import SelectFromModel # 从模型中选择特征
from sklearn.model_selection import cross_val_score # 交叉验证

导入乳腺癌数据集:

python 复制代码
data = load_breast_cancer()
x = data.data
y = data.target

查看数据集特征矩阵的情况:

python 复制代码
data.data.shape # (569, 30)

这个时候有30个特征。实例化一个逻辑回归模型,并使用交叉验证评估模型性能:

python 复制代码
LR_ = LR(solver="liblinear", C=0.8, random_state=420)
cross_val_score(LR_, x, y, cv=10).mean() # 0.9508145363408522

使用select_from_model函数根据模型的权重系数或特征重要性等信息,选择重要的特征,并将选择后的特征矩阵返回给x_embedded:

python 复制代码
X_embedded = SelectFromModel(LR_, threshold = 0.8, norm_order=1).fit_transform(x, y) # norm_order=1表示L1正则,模型会删除L1正则化后系数为0的特征,threshold表示阈值,当特征的系数小于阈值时,删除该特征
X_embedded.shape # (569, 9)

可以发现现在特征只剩下9个了。在这里我们设置了threshold = 0.8,也就是说小于0.8的权重系数被删除掉了。但是我们怎么知道设置哪个threshold值后得到的特征矩阵去训练模型,会得到最优的模型效果呢?

接下来我们开始绘制threshold的学习曲线,也就是不同的threshold值对模型效果的影响。在绘制之前,我们先训练模型,看一下权重系数的最大值,找到threshold的取值范围:

python 复制代码
# 画threshod的学习曲线
LR_.fit(x, y) # 训练模型
LR_.coef_ # 查看训练后各变量的系数
LR_.coef_.shape # (1, 30)
LR_.coef_.max() # 1.9376881066687164

为了对比特征选择前和选择后模型的效果,我们设置了一组对照,同时确定了threshold的取值范围:

python 复制代码
fullx = [] # 创建特征选择前的交叉验证的空列表
fsx = [] # 创建特征选择后的交叉验证的空列表
threshold = np.linspace(0, abs(LR_.fit(x, y).coef_).max(), 20) # 从0到最大系数之间取20个数

接下来绘制函数图像:

python 复制代码
k = 0
for i in threshold:
    x_embedded = SelectFromModel(LR_, threshold=i).fit_transform(x, y) # threshold表示阈值,当特征的系数小于阈值时,删除该特征。此行代码是形成新的特征矩阵
    fullx.append(cross_val_score(LR_, x, y, cv=5).mean()) # 特征选择前进行交叉验证
    fsx.append(cross_val_score(LR_, x_embedded, y, cv=5).mean()) # 特征选择后进行交叉验证
    print((threshold[k], x_embedded.shape[1])) # 打印每次循环取到的阈值和降维后的特征数
    k += 1
plt.figure(figsize=(20, 5))
plt.plot(threshold, fullx, label="full")
plt.plot(threshold, fsx, label="feature selection")
plt.xticks(threshold)
plt.legend()
plt.show()

结果如下:

由图可知,随着threshold的值逐渐变大,被删除的特征越多,模型效果越差。这不是我们想要的结果,因此我们将范围缩小,将threshold的取值范围缩小(0,0.1),再来跑一下模型:

python 复制代码
fullx = [] # 创建特征选择前的交叉验证的空列表
fsx = [] # 创建特征选择后的交叉验证的空列表
threshold = np.linspace(0, 0.1, 20) # 从0到最大系数之间取20个数
k = 0
for i in threshold:
    x_embedded = SelectFromModel(LR_, threshold=i).fit_transform(x, y) # threshold表示阈值,当特征的系数小于阈值时,删除该特征。此行代码是形成新的特征矩阵
    fullx.append(cross_val_score(LR_, x, y, cv=5).mean()) # 特征选择前进行交叉验证
    fsx.append(cross_val_score(LR_, x_embedded, y, cv=5).mean()) # 特征选择后进行交叉验证
    print((threshold[k], x_embedded.shape[1])) # 打印每次循环取到的阈值和降维后的特征数
    k += 1
plt.figure(figsize=(20, 5))
plt.plot(threshold, fullx, label="full")
plt.plot(threshold, fsx, label="feature selection")
plt.xticks(threshold)
plt.legend()
plt.show()

结果如下:

可以发现,当threshold取0.0053时,模型可以获得最好的效果。

相关推荐
智驱力人工智能4 小时前
仓库园区无人机烟雾识别:构建立体化、智能化的早期火灾预警体系 无人机烟雾检测 无人机动态烟雾分析AI系统 无人机辅助火灾救援系统
人工智能·opencv·算法·目标检测·架构·无人机·边缘计算
Christo34 小时前
2022-《Deep Clustering: A Comprehensive Survey》
人工智能·算法·机器学习·数据挖掘
Yzzz-F5 小时前
牛客周赛round123 G小红出千[补题][滑动窗口]
算法
思通数据5 小时前
市政道路无人机巡检:AI视觉技术的应用与挑战
人工智能·深度学习·安全·目标检测·机器学习·无人机·语音识别
肆悟先生5 小时前
3.16 含有可变参数的函数
c++·算法
救救孩子把5 小时前
45-机器学习与大模型开发数学教程-4-7 特征函数与矩母函数
人工智能·机器学习
步步为营DotNet5 小时前
深度解析.NET中属性(Property)的幕后机制:优化数据访问与封装
java·算法·.net
Swift社区5 小时前
LeetCode 454 - 四数相加 II
java·算法·leetcode
tokepson5 小时前
反向传播
深度学习·算法·ai·反向传播
鲨莎分不晴5 小时前
通信学习 (Learning to Communicate):从“心电感应”到“语言涌现”
人工智能·学习·机器学习