Linux MMC子系统 - 2.eMMC 5.1总线协议浅析

By: Ailson Jack

Date: 2023.10.27

个人博客:http://www.only2fire.com/

本文在我博客的地址是:http://www.only2fire.com/archives/161.html,排版更好,便于学习,也可以去我博客逛逛,兴许有你想要的内容呢。
微信公众号:嵌入式那些事

eMMC总线拓扑

在eMMC总线中,可以有一个Host,多个eMMC设备。总线上的所有通信都是以Host发送一个Command给eMMC开始的,eMMC对于收到的不同Command会做出不同的response,当然了eMMC对于收到的部分Command可以不做response。Host一次只能与一个eMMC设备通信。

在上电启动后,Host会为所有eMMC设备依次分配相对地址(RCA,Relative card Address)。当Host需要和某一个eMMC设备通信时,会先通过RCA选中该eMMC设备,只有被选中的eMMC设备才会响应Host的Command。

eMMC总线协议

在系统上电复位后,Host必须使用eMMC总线协议指定的message来初始化eMMC设备。每个message都由下面的一个标记表示:

  • command:命令,一个命令是一个开始操作的标记。命令是由Host发给eMMC设备的。一个命令在CMD线上被串行传输。
  • response:响应,响应是由eMMC设备发送给Host,用于eMMC设备对先前收到命令的回复。一个响应在CMD线上被串行传输。
  • data:数据,数据可以从Host传输给eMMC设备,也可以从eMMC设备传输给Host。数据在数据线上被传输。用于传输数据的数据线可以是1个(DAT0),4个(DAT0-DAT3)或者8个(DAT0-DAT7)。

对于每一个数据线来说,在一个时钟周期可以传输1位数据,也就是SDR模式(single data rate)。当然了,在一个时钟周期可以传输2位数据,也就是DDR模式(dual data rate)。

eMMC的读和写命令是按照block为单位进行的。读和写可以是单块或者多块。读和写数据时,数据block后面会跟CRC。

eMMC读数据

Host从eMMC设备读取数据的流程图如下图所示:

如果Host发送的是Read Single Block的命令(CMD17),那么eMMC设备只会发送一个Block的数据(一个Block数据的字节数可以由Host通过CMD16命令设定或者为eMMC设备的默认值)。

如果Host发送的是Read Multiple Block的命令(CMD18),并且在发送CMD18之前,先发送一个SET BLOCK COUNT命令(CMD23)来设置需要读取的数据块数量,那么eMMC设备在传输完指定数量的数据块之后,会自动结束数据传输,不需要Host主动发送Stop Command(CMD12)。

如果Host发送的是Read Multiple Block的命令(CMD18),并且在发送CMD18之前,Host没有发送设置读取数据块数量的命令,那么eMMC设备会持续发送数据,直到Host主动发送Stop Command(CMD12)。

eMMC写数据

Host向eMMC设备写入数据的流程图如下图所示:

如果Host发送的是Write Single Block的命令(CMD24),那么eMMC设备只会将后续第一个Block的数据写入的存储器中(一个Block数据的字节数可以由Host通过CMD16命令设定或者为eMMC设备的默认值)。

如果Host发送的是Write Multiple Block的命令(CMD25),并且在发送CMD25之前,先发送一个SET BLOCK COUNT命令(CMD23)来设置需要写入的数据块数量,那么eMMC设备在接收完指定数量的数据块之后,会自动结束数据传输,不需要Host主动发送Stop Command(CMD12)。

如果Host发送的是Write Multiple Block的命令(CMD25),并且在发送CMD25之前,Host没有发送设置写入数据块数量的命令,那么eMMC设备会持续地将接收到的数据写入到存储器中,直到Host主动发送Stop Command(CMD12)。

eMMC设备在接收到一个Block的数据后,会进行CRC校验,然后将校验结果通过CRC Token发送给Host。发送完CRC Token后,如果CRC校验成功,eMMC设备会将数据写入到内部存储器,此时DAT0信号会拉低,作为Busy信号。Host会持续检测DAT0信号,直到为高电平时,才会接着发送下一个Block的数据。如果CRC校验失败,那么eMMC设备不会进行数据写入,此次传输的后续数据都会被忽略。

eMMC无数据和无响应命令示意

在Host与eMMC设备的通信中,有部分命令是不需要进行数据传输的,还有部分命令不需要eMMC设备回复Response,示意图如下所示:

eMMC命令

eMMC命令类型

eMMC协议定义了4种类型的命令,包括:bc、bcr、ac和adtc,这些命令类型的说明如下:

  • bc:broadcast commands(bc),bc是广播命令,主机发送bc命令给eMMC设备后,eMMC设备不需要回复响应(response)。
  • bcr:broadcast commands with response(bcr),bcr是需要eMMC设备回复响应的广播命令。
  • ac:addressed(point-to-point) commands(ac),ac是数据线(DAT lines)无数据传输的(no data transfer)点对点(point-to-point)命令。
  • adtc:addressed(point-to-point) data transfer commands(adtc),adtc是数据线有数据传输的点对点命令。

所有的命令(command)和响应(response)都是在CMD线上进行传输的。发送命令或响应时先发送起始位(Start bit),最后发送结束位(End bit)。

eMMC命令格式

eMMC的Command格式如下图所示:

eMMC的Command由48 bits组成,所有的eMMC命令都以01开始,以1结尾。所有的eMMC命令都是在CMD线上进行传输的,发送命令时先发送命令的起始位(Start bit),最后发送命令的结束位(End bit)。eMMC命令各个位的说明如下图所示:

  • Start Bit:起始位,固定为0,在没有命令传输的情况下,CMD线上的信号保持高电平,当Host将Start Bit发送到总线上时,eMMC设备可以很方便检测到命令的Start Bit(CMD线上的信号由高电平变为低电平),并开始接收Command。
  • Transmission Bit:传输位,固定为1,该位指示CMD线上数据的传输方向,该位为1,表示CMD线上数据的传输方向为从Host到eMMC设备。
  • Command Index和Argument:命令索引和命令参数,Command Index和Argument是命令的具体内容,不同的命令Command Index不同,不同的命令Argument也不相同。
  • CRC:CRC校验值,包含Start Bit、Transmission Bit、Command Index和Argument内容的CRC校验值。
  • End Bit:结束位,固定为1。

eMMC命令类别

eMMC的命令被划分成多种不同的类别。每一种命令类别支持一个设备功能的子集。

Class 0是所有eMMC设备都必须支持的命令类别。其他的命令类别根据具体的设备类型可以是必须支持的,也可以是可选的。

eMMC命令类别描述如下:

Host可以通过读取CSD寄存器的CCC [95:84]位域,来了解当前eMMC设备对命令类别的支持情况,对应的位域值为1,就表示该eMMC设备支持对应的命令类别。

eMMC响应

eMMC响应有两种长度的数据包,分别为48 Bits和136 Bits,eMMC响应的格式如下图所示:

eMMC的响应由48 bits或者136 bits组成,所有的eMMC响应都以00开始,以1结尾。所有的eMMC响应都是在CMD线上进行传输的,eMMC设备发送响应时先发送响应的起始位(Start bit),最后发送响应的结束位(End bit)。

  • Start Bit:起始位,固定为0,在没有响应传输的情况下,CMD线上的信号保持高电平,当eMMC设备将Start Bit发送到总线上时,Host可以很方便检测到响应的Start Bit(CMD线上的信号由高电平变为低电平),并开始接收响应。
  • Transmission Bit:传输位,固定为0,该位指示CMD线上数据的传输方向,该位为0,表示CMD线上数据的传输方向为从eMMC设备到Host。
  • Content:响应的具体内容,不同的响应Content不同。
  • CRC:CRC校验值,包含Start Bit、Transmission Bit和Content内容的CRC校验值。
  • End Bit:结束位,固定为1。

eMMC有5种类型的响应,包括:R1,R2,R3,R4和R5。

R1

R1响应的数据长度为48 bits,其中[45:40]数据位域表示的是该响应对应命令的编号。[39:8]是一个32位大小的位域,主要用于反应设备的状态信息,具体的设备状态信息内容可以参考eMMC 5.1 spec的6.13 Device status章节。

R1b和R1完全相同,只是R1b会在数据线DAT0上传输一个可选的busy信号。基于eMMC设备在接收命令之前的状态,eMMC设备在接收到一些命令之后可能会变得繁忙。

R2

R2响应的数据长度为136 bits。[127:1]是一个127位大小的位域,该位域将CID寄存器的值作为CMD2和CMD10的响应内容。[127:1]位域也可以将CSD寄存器的值作为CMD9的响应内容。CID和CSD寄存器的[127:1]位作为R2响应内容被传输,CID和CSD寄存器的保留位[0]由于该位的值总是1,因此保留位[0]被R2响应的End bit替换。

R3

R3响应的数据长度为48 bits。[39:8]是一个32位大小的位域,该位域将OCR寄存器的值作为CMD1的响应内容。

R4

R4响应的数据长度为48 bits。[39:8]是参数域,该位域包含寻址设备的RCA,要进行读写操作的寄存器地址以及寄存器内容。如果操作成功,参数域中的状态位将被置1。R4响应只作为对CMD39的响应。

R5

R5响应的数据长度为48 bits。如果该响应由Host产生,那么RCA[31:16]位域的值应该为0。R5响应只作为对CMD40的响应。

eMMC数据块

eMMC数据块由Start bit、Data、CRC和End bit组成。下面对不同总线宽度和数据速率(Date Rate)下,各个数据块的格式进行一个简单的说明。

1位总线宽度 SDR模式

CRC为Data的16 bitCRC校验值,不包含起始位。

4位总线宽度 SDR模式

各个数据线上的CRC为对应数据线的Data的16 bit CRC校验值。

8位总线宽度 SDR模式

各个数据线上的CRC为对应数据线的Data的16 bit CRC校验值。

4位总线宽度 DDR模式

DDR模式下,在时钟的上升沿和下降沿数据线都会传输数据。在时钟的上升沿传输数据的奇数字节(字节1,3,5 ...),在时钟的下降沿传输数据的偶数字节(字节2,4,6 ...)。

在DDR模式下,每个数据线上有两个相互交织的CRC16,时钟上升沿的CRC比特组成odd CRC16,时钟下降沿的CRC比特组成even CRC16。odd CRC16用于校验该数据线上所有上升沿比特组成的数据,even CRC16用于校验该数据线上所有下降沿比特组成的数据。

8位总线宽度 DDR模式

eMMC CRC status token

在Host向eMMC设备写数据过程中,eMMC设备接收到Host发送的一个数据块之后,会进行CRC校验,如果校验成功,eMMC设备会在对应的数据线上向Host回复一个Positive CRC status token("010"),如果校验失败,eMMC设备会在对应的数据线上向Host回复一个Negative CRC status token("101")。

在Host从eMMC设备读取数据的过程中,Host接收到eMMC设备发送的一个数据块之后,也会进行CRC校验,但是不论校验成功还是校验失败,Host都不会向eMMC设备回复CRC status token。

Positive CRC status token

Negative CRC status token

eMMC寄存器

eMMC 5.1协议定义了7个寄存器:OCR,CID,CSD,EXT_CSD,RCA,DSR和QSR,下面简单的列举常用的6个寄存器。

名称 宽度(字节) 说明 实现
OCR 4 操作条件寄存器(Operation conditions register)。通过广播命令获取寄存器信息,包含设备的供电类型和寻址模式。 必须
CID 16 卡识别寄存器(Card IDentification)。包含识别设备的唯一码。 必须
CSD 16 卡特定数据寄存器(Card Specific Data)。包含卡操作状态的具体信息。 必须
Extended CSD 512 扩展卡特定数据寄存器(Extended Card Specific Data)。包含设备的容量和当前模式信息。 必须
RCA 2 相对地址寄存器(Relative card address)。在初始化过程中,由主机控制器动态分配的地址。 必须
DSR 2 驱动等级寄存器(Driver Stage Register)。配置设备的输出驱动。 可选

eMMC总线测试过程

在SDR模式下,Host通过发送CMD19和CMD14可以进行eMMC总线测试过程(Bus testing procedure),测试eMMC接口的硬件引脚连接性。在DDR模式下,不支持总线测试,CMD19和CMD14被认为是非法命令。

在SDR模式下进行eMMC总线测试时,首先Host发送CMD19给eMMC设备,接着Host在每根数据线上发送特定格式的数据给eMMC。然后,Host发送CMD14给eMMC设备,请求eMMC设备回复翻转的数据。Host可以通过对接收到的翻转数据进行比较,就能知道eMMC接口的引脚引脚连接情况。

1bit总线宽度时,eMMC总线测试的数据格式如下图所示:

4bit总线宽度时,eMMC总线测试的数据格式如下图所示:

8bit总线宽度时,eMMC总线测试的数据格式如下图所示:

欢迎关注博主的公众号(微信搜索公众号:嵌入式那些事),可以扫描下面的公众号二维码:

如果文中有什么问题欢迎指正,毕竟博主的水平有限。

如果这篇文章对你有帮助,记得点赞和关注博主就行了^_^。

排版更好的内容见我博客的地址:http://www.only2fire.com/archives/161.html

注:转载请注明出处,谢谢!^_^

相关推荐
pk_xz12345641 分钟前
Shell 脚本中变量和字符串的入门介绍
linux·运维·服务器
小珑也要变强44 分钟前
Linux之sed命令详解
linux·运维·服务器
Lary_Rock3 小时前
RK3576 LINUX RKNN SDK 测试
linux·运维·服务器
云飞云共享云桌面5 小时前
8位机械工程师如何共享一台图形工作站算力?
linux·服务器·网络
Peter_chq5 小时前
【操作系统】基于环形队列的生产消费模型
linux·c语言·开发语言·c++·后端
一坨阿亮6 小时前
Linux 使用中的问题
linux·运维
dsywws7 小时前
Linux学习笔记之vim入门
linux·笔记·学习
幺零九零零8 小时前
【C++】socket套接字编程
linux·服务器·网络·c++
小林熬夜学编程9 小时前
【Linux系统编程】第四十一弹---线程深度解析:从地址空间到多线程实践
linux·c语言·开发语言·c++·算法
程思扬10 小时前
为什么Uptime+Kuma本地部署与远程使用是网站监控新选择?
linux·服务器·网络·经验分享·后端·网络协议·1024程序员节