DAY36 738.单调递增的数字 + 968.监控二叉树

738.单调递增的数字

题目要求:给定一个非负整数 N,找出小于或等于 N 的最大的整数,同时这个整数需要满足其各个位数上的数字是单调递增。

(当且仅当每个相邻位数上的数字 x 和 y 满足 x <= y 时,我们称这个整数是单调递增的。)

示例 1:

  • 输入: N = 10
  • 输出: 9

示例 2:

  • 输入: N = 1234
  • 输出: 1234

示例 3:

  • 输入: N = 332
  • 输出: 299

说明: N 是在 [0, 10^9] 范围内的一个整数。

思路

例如:98,一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),首先想让strNum[i - 1]--,然后strNum[i]给为9,这样这个整数就是89,即小于98的最大的单调递增整数。

那么从后向前遍历,就可以重复利用上次比较得出的结果了,从后向前遍历332的数值变化为:332 -> 329 -> 299

cpp 复制代码
class Solution {
public:
    int monotoneIncreasingDigits(int n) {
        string strNum = to_string(n);
        // flag用来标记赋值9从哪里开始
        int flag = strNum.size();
        for (int i = strNum.size() - 1; i > 0; --i) {
            if (strNum[i-1] > strNum[i]) {
                flag = i;
                strNum[i-1]--;
            }
        }
        for (int i = flag; i < strNum.size(); ++i) {
            strNum[i] = '9';
        }
        return stoi(strNum);
    }
};
  • 时间复杂度:O(n),n 为数字长度
  • 空间复杂度:O(n),需要一个字符串,转化为字符串操作更方便

968.监控二叉树

题目要求:

给定一个二叉树,我们在树的节点上安装摄像头。

节点上的每个摄影头都可以监视其父对象、自身及其直接子对象。

计算监控树的所有节点所需的最小摄像头数量。

示例 1:

  • 输入:[0,0,null,0,0]
  • 输出:1
  • 解释:如图所示,一台摄像头足以监控所有节点。

示例 2:

  • 输入:[0,0,null,0,null,0,null,null,0]
  • 输出:2
  • 解释:需要至少两个摄像头来监视树的所有节点。 上图显示了摄像头放置的有效位置之一。

提示:

  • 给定树的节点数的范围是 [1, 1000]。
  • 每个节点的值都是 0。

思路

示例中的摄像头都没有放在叶子节点上!

摄像头可以覆盖上中下三层,如果把摄像头放在叶子节点上,就浪费的一层的覆盖。

头结点放不放摄像头也就省下一个摄像头, 叶子节点放不放摄像头省下了的摄像头数量是指数阶别的。

所以我们要从下往上看,局部最优:让叶子节点的父节点安摄像头,所用摄像头最少,整体最优:全部摄像头数量所用最少!

确定遍历顺序

在二叉树中如何从低向上推导呢?

可以使用后序遍历也就是左右中的顺序,这样就可以在回溯的过程中从下到上进行推导了。

如何隔两个节点放一个摄像头

此时需要状态转移的公式,大家不要和动态的状态转移公式混到一起,本题状态转移没有择优的过程,就是单纯的状态转移!

来看看这个状态应该如何转移,先来看看每个节点可能有几种状态:

有如下三种:

  • 该节点无覆盖
  • 本节点有摄像头
  • 本节点有覆盖

我们分别有三个数字来表示:

  • 0:该节点无覆盖
  • 1:本节点有摄像头
  • 2:本节点有覆盖

那么空节点不能是无覆盖的状态,这样叶子节点就要放摄像头了,空节点也不能是有摄像头的状态,这样叶子节点的父节点就没有必要放摄像头了,而是可以把摄像头放在叶子节点的爷爷节点上。

所以空节点的状态只能是有覆盖,这样就可以在叶子节点的父节点放摄像头了(空节点就是叶子节点)

单层逻辑处理。

主要有如下四类情况:

情况1:左右节点都有覆盖

左孩子有覆盖,右孩子有覆盖,那么此时中间节点应该就是无覆盖的状态了。

如图:

情况2:左右节点至少有一个无覆盖的情况

如果是以下情况,则中间节点(父节点)应该放摄像头:

  • left == 0 && right == 0 左右节点无覆盖
  • left == 1 && right == 0 左节点有摄像头,右节点无覆盖
  • left == 0 && right == 1 左节点有无覆盖,右节点摄像头
  • left == 0 && right == 2 左节点无覆盖,右节点覆盖
  • left == 2 && right == 0 左节点覆盖,右节点无覆盖

这个不难理解,毕竟有一个孩子没有覆盖,父节点就应该放摄像头。

此时摄像头的数量要加一,并且return 1,代表中间节点放摄像头。

情况3:左右节点至少有一个有摄像头

如果是以下情况,其实就是 左右孩子节点有一个有摄像头了,那么其父节点就应该是2(覆盖的状态)

  • left == 1 && right == 2 左节点有摄像头,右节点有覆盖
  • left == 2 && right == 1 左节点有覆盖,右节点有摄像头
  • left == 1 && right == 1 左右节点都有摄像头

如果left == 1, right == 0 怎么办?其实这种条件在情况2中已经判断过了,如图:

情况4:头结点没有覆盖

以上都处理完了,递归结束之后,可能头结点 还有一个无覆盖的情况,如图:

所以递归结束之后,还要判断根节点,如果没有覆盖,result++。

cpp 复制代码
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int result;
    int traversal(TreeNode* cur) {
        if (cur == NULL) return 2;
        int left = traversal(cur->left);
        int right = traversal(cur->right);
        if (left == 2 && right == 2) return 0;
        if (left == 0 || right == 0) {
            result++;
            return 1;
        }
        if (left == 1 || right == 1) return 2;
        return -1;
    }
    int minCameraCover(TreeNode* root) {
        result = 0;
        if (traversal(root) == 0) result++;
        return result;
    }
};
  • 时间复杂度: O(n),需要遍历二叉树上的每个节点
  • 空间复杂度: O(n)

本题的难点首先是要想到贪心的思路,然后就是遍历和状态推导。

在二叉树上进行状态推导,其实难度就上了一个台阶了,需要对二叉树的操作非常娴熟。想清楚改用左右中的后序遍历顺序。

相关推荐
田梓燊21 分钟前
图论 八字码
c++·算法·图论
苦 涩32 分钟前
考研408笔记之数据结构(六)——查找
数据结构
fks1431 小时前
leetcode 121. 买卖股票的最佳时机
leetcode
Tanecious.1 小时前
C语言--数据在内存中的存储
c语言·开发语言·算法
Bran_Liu1 小时前
【LeetCode 刷题】栈与队列-队列的应用
数据结构·python·算法·leetcode
kcarly2 小时前
知识图谱都有哪些常见算法
人工智能·算法·知识图谱
CM莫问2 小时前
<论文>用于大语言模型去偏的因果奖励机制
人工智能·深度学习·算法·语言模型·自然语言处理
程序猿零零漆2 小时前
《从入门到精通:蓝桥杯编程大赛知识点全攻略》(五)-数的三次方根、机器人跳跃问题、四平方和
java·算法·蓝桥杯
苦 涩2 小时前
考研408笔记之数据结构(五)——图
数据结构·笔记·考研
小禾苗_3 小时前
数据结构——算法基础
数据结构