738.单调递增的数字
题目要求:给定一个非负整数 N,找出小于或等于 N 的最大的整数,同时这个整数需要满足其各个位数上的数字是单调递增。
(当且仅当每个相邻位数上的数字 x 和 y 满足 x <= y 时,我们称这个整数是单调递增的。)
示例 1:
- 输入: N = 10
- 输出: 9
示例 2:
- 输入: N = 1234
- 输出: 1234
示例 3:
- 输入: N = 332
- 输出: 299
说明: N 是在 [0, 10^9] 范围内的一个整数。
思路
例如:98,一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),首先想让strNum[i - 1]--,然后strNum[i]给为9,这样这个整数就是89,即小于98的最大的单调递增整数。
那么从后向前遍历,就可以重复利用上次比较得出的结果了,从后向前遍历332的数值变化为:332 -> 329 -> 299
cpp
class Solution {
public:
int monotoneIncreasingDigits(int n) {
string strNum = to_string(n);
// flag用来标记赋值9从哪里开始
int flag = strNum.size();
for (int i = strNum.size() - 1; i > 0; --i) {
if (strNum[i-1] > strNum[i]) {
flag = i;
strNum[i-1]--;
}
}
for (int i = flag; i < strNum.size(); ++i) {
strNum[i] = '9';
}
return stoi(strNum);
}
};
- 时间复杂度:O(n),n 为数字长度
- 空间复杂度:O(n),需要一个字符串,转化为字符串操作更方便
968.监控二叉树
题目要求:
给定一个二叉树,我们在树的节点上安装摄像头。
节点上的每个摄影头都可以监视其父对象、自身及其直接子对象。
计算监控树的所有节点所需的最小摄像头数量。
示例 1:
- 输入:[0,0,null,0,0]
- 输出:1
- 解释:如图所示,一台摄像头足以监控所有节点。
示例 2:
- 输入:[0,0,null,0,null,0,null,null,0]
- 输出:2
- 解释:需要至少两个摄像头来监视树的所有节点。 上图显示了摄像头放置的有效位置之一。
提示:
- 给定树的节点数的范围是 [1, 1000]。
- 每个节点的值都是 0。
思路
示例中的摄像头都没有放在叶子节点上!
摄像头可以覆盖上中下三层,如果把摄像头放在叶子节点上,就浪费的一层的覆盖。
头结点放不放摄像头也就省下一个摄像头, 叶子节点放不放摄像头省下了的摄像头数量是指数阶别的。
所以我们要从下往上看,局部最优:让叶子节点的父节点安摄像头,所用摄像头最少,整体最优:全部摄像头数量所用最少!
确定遍历顺序
在二叉树中如何从低向上推导呢?
可以使用后序遍历也就是左右中的顺序,这样就可以在回溯的过程中从下到上进行推导了。
如何隔两个节点放一个摄像头
此时需要状态转移的公式,大家不要和动态的状态转移公式混到一起,本题状态转移没有择优的过程,就是单纯的状态转移!
来看看这个状态应该如何转移,先来看看每个节点可能有几种状态:
有如下三种:
- 该节点无覆盖
- 本节点有摄像头
- 本节点有覆盖
我们分别有三个数字来表示:
- 0:该节点无覆盖
- 1:本节点有摄像头
- 2:本节点有覆盖
那么空节点不能是无覆盖的状态,这样叶子节点就要放摄像头了,空节点也不能是有摄像头的状态,这样叶子节点的父节点就没有必要放摄像头了,而是可以把摄像头放在叶子节点的爷爷节点上。
所以空节点的状态只能是有覆盖,这样就可以在叶子节点的父节点放摄像头了(空节点就是叶子节点)
单层逻辑处理。
主要有如下四类情况:
情况1:左右节点都有覆盖
左孩子有覆盖,右孩子有覆盖,那么此时中间节点应该就是无覆盖的状态了。
如图:
情况2:左右节点至少有一个无覆盖的情况
如果是以下情况,则中间节点(父节点)应该放摄像头:
- left == 0 && right == 0 左右节点无覆盖
- left == 1 && right == 0 左节点有摄像头,右节点无覆盖
- left == 0 && right == 1 左节点有无覆盖,右节点摄像头
- left == 0 && right == 2 左节点无覆盖,右节点覆盖
- left == 2 && right == 0 左节点覆盖,右节点无覆盖
这个不难理解,毕竟有一个孩子没有覆盖,父节点就应该放摄像头。
此时摄像头的数量要加一,并且return 1,代表中间节点放摄像头。
情况3:左右节点至少有一个有摄像头
如果是以下情况,其实就是 左右孩子节点有一个有摄像头了,那么其父节点就应该是2(覆盖的状态)
- left == 1 && right == 2 左节点有摄像头,右节点有覆盖
- left == 2 && right == 1 左节点有覆盖,右节点有摄像头
- left == 1 && right == 1 左右节点都有摄像头
如果left == 1, right == 0 怎么办?其实这种条件在情况2中已经判断过了,如图:
情况4:头结点没有覆盖
以上都处理完了,递归结束之后,可能头结点 还有一个无覆盖的情况,如图:
所以递归结束之后,还要判断根节点,如果没有覆盖,result++。
cpp
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int result;
int traversal(TreeNode* cur) {
if (cur == NULL) return 2;
int left = traversal(cur->left);
int right = traversal(cur->right);
if (left == 2 && right == 2) return 0;
if (left == 0 || right == 0) {
result++;
return 1;
}
if (left == 1 || right == 1) return 2;
return -1;
}
int minCameraCover(TreeNode* root) {
result = 0;
if (traversal(root) == 0) result++;
return result;
}
};
- 时间复杂度: O(n),需要遍历二叉树上的每个节点
- 空间复杂度: O(n)
本题的难点首先是要想到贪心的思路,然后就是遍历和状态推导。
在二叉树上进行状态推导,其实难度就上了一个台阶了,需要对二叉树的操作非常娴熟。想清楚改用左右中的后序遍历顺序。