516 最长回文子序列(区间DP)(灵神笔记)

题目

最长回文子序列

给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。

子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。

示例 1:

输入:s = "bbbab"

输出:4

解释:一个可能的最长回文子序列为 "bbbb" 。

示例 2:

输入:s = "cbbd"

输出:2

解释:一个可能的最长回文子序列为 "bb" 。

提示:

1 <= s.length <= 1000

s 仅由小写英文字母组成

题解

记忆化搜索

java 复制代码
class Solution {
    private char[] str;
    private int[][] cache;

    public int longestPalindromeSubseq(String s) {
        this.str = s.toCharArray();
        int n = str.length;
        cache = new int[n][n];
        for (int i = 0; i < n; i++) {
            Arrays.fill(cache[i], -1);
        }
        return dfs(0, n - 1);
    }

    private int dfs(int i, int j) {
        if (i > j) {
            return 0;
        }
        if (i == j) {
            return 1;
        }
        if (cache[i][j] != -1) {
            return cache[i][j];
        }
        if (str[i] == str[j]) {
            return cache[i][j] = dfs(i + 1, j - 1) + 2; //都选
        }
        //选或不选
        return cache[i][j] = Math.max(dfs(i + 1, j), dfs(i, j - 1));
    }
}

时间复杂度:O(n^2) 一共有n*n个状态

空间复杂度:O(n^2)

递推

java 复制代码
class Solution {
    public int longestPalindromeSubseq(String s) {
        char[] str = s.toCharArray();
        int n = str.length;
        int[][] f = new int[n][n];
        for (int i = n - 1; i >= 0; i--) {
            f[i][i] = 1; // i==j
            for (int j = i + 1; j < n; j++) {
                f[i][j] = str[i] == str[j] ? f[i + 1][j - 1] + 2 :
                                Math.max(f[i + 1][j], f[i][j - 1]);
            }
        }
        return f[0][n - 1];
    }
}

时间复杂度:O(n^2) 一共有n*n个状态

空间复杂度:O(n^2)

空间优化

java 复制代码
class Solution {
    public int longestPalindromeSubseq(String s) {
        char[] str = s.toCharArray();
        int n = str.length;
        int[] f = new int[n];
        for (int i = n - 1; i >= 0; i--) {
            f[i] = 1; // i==j
            int pre = 0; // f[i+1][i]
            for (int j = i + 1; j < n; j++) {
                int tmp = f[j];
                f[j] = str[i] == str[j] ? pre + 2 : Math.max(f[j], f[j - 1]);
                pre = tmp;
            }
        }
        return f[n - 1];
    }
}

时间复杂度:O(n^2) 一共有n*n个状态

空间复杂度:O(n)

相关推荐
烤麻辣烫1 分钟前
黑马程序员苍穹外卖(新手)DAY10
java·开发语言·学习·spring·intellij-idea
希望有朝一日能如愿以偿1 分钟前
力扣每日一题:使数组和能被p整除
数据结构·算法·leetcode
q***73552 分钟前
Spring Boot应用关闭分析
java·spring boot·后端
u***45163 分钟前
Spring Boot中的404错误:原因、影响及处理策略
java·spring boot·后端
Christo35 分钟前
AAAI-2013《Spectral Rotation versus K-Means in Spectral Clustering》
人工智能·算法·机器学习·数据挖掘·kmeans
葵花楹6 分钟前
【补题】【atcoderabc434】【codeforces1067】
算法
p***62997 分钟前
mysql-connector-java 和 mysql-connector-j的区别
android·java·mysql
程序员三明治7 分钟前
【Java】synchronized关键字详解:从字节码到对象头与锁升级
java·开发语言·juc·synchronized··锁升级
k***3889 分钟前
Spring Boot项目集成Redisson 原始依赖与 Spring Boot Starter 的流程
java·spring boot·后端
老虎06279 分钟前
Java基础面试题(11)—Java(泛型)
java·开发语言·windows