516 最长回文子序列(区间DP)(灵神笔记)

题目

最长回文子序列

给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。

子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。

示例 1:

输入:s = "bbbab"

输出:4

解释:一个可能的最长回文子序列为 "bbbb" 。

示例 2:

输入:s = "cbbd"

输出:2

解释:一个可能的最长回文子序列为 "bb" 。

提示:

1 <= s.length <= 1000

s 仅由小写英文字母组成

题解

记忆化搜索

java 复制代码
class Solution {
    private char[] str;
    private int[][] cache;

    public int longestPalindromeSubseq(String s) {
        this.str = s.toCharArray();
        int n = str.length;
        cache = new int[n][n];
        for (int i = 0; i < n; i++) {
            Arrays.fill(cache[i], -1);
        }
        return dfs(0, n - 1);
    }

    private int dfs(int i, int j) {
        if (i > j) {
            return 0;
        }
        if (i == j) {
            return 1;
        }
        if (cache[i][j] != -1) {
            return cache[i][j];
        }
        if (str[i] == str[j]) {
            return cache[i][j] = dfs(i + 1, j - 1) + 2; //都选
        }
        //选或不选
        return cache[i][j] = Math.max(dfs(i + 1, j), dfs(i, j - 1));
    }
}

时间复杂度:O(n^2) 一共有n*n个状态

空间复杂度:O(n^2)

递推

java 复制代码
class Solution {
    public int longestPalindromeSubseq(String s) {
        char[] str = s.toCharArray();
        int n = str.length;
        int[][] f = new int[n][n];
        for (int i = n - 1; i >= 0; i--) {
            f[i][i] = 1; // i==j
            for (int j = i + 1; j < n; j++) {
                f[i][j] = str[i] == str[j] ? f[i + 1][j - 1] + 2 :
                                Math.max(f[i + 1][j], f[i][j - 1]);
            }
        }
        return f[0][n - 1];
    }
}

时间复杂度:O(n^2) 一共有n*n个状态

空间复杂度:O(n^2)

空间优化

java 复制代码
class Solution {
    public int longestPalindromeSubseq(String s) {
        char[] str = s.toCharArray();
        int n = str.length;
        int[] f = new int[n];
        for (int i = n - 1; i >= 0; i--) {
            f[i] = 1; // i==j
            int pre = 0; // f[i+1][i]
            for (int j = i + 1; j < n; j++) {
                int tmp = f[j];
                f[j] = str[i] == str[j] ? pre + 2 : Math.max(f[j], f[j - 1]);
                pre = tmp;
            }
        }
        return f[n - 1];
    }
}

时间复杂度:O(n^2) 一共有n*n个状态

空间复杂度:O(n)

相关推荐
努力变厉害的小超超30 分钟前
ArkTS中的组件基础、状态管理、样式处理、class语法以及界面渲染
笔记·鸿蒙
阿伟*rui32 分钟前
配置管理,雪崩问题分析,sentinel的使用
java·spring boot·sentinel
浮生如梦_2 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
XiaoLeisj2 小时前
【JavaEE初阶 — 多线程】单例模式 & 指令重排序问题
java·开发语言·java-ee
paopaokaka_luck3 小时前
【360】基于springboot的志愿服务管理系统
java·spring boot·后端·spring·毕业设计
dayouziei3 小时前
java的类加载机制的学习
java·学习
励志成为嵌入式工程师3 小时前
c语言简单编程练习9
c语言·开发语言·算法·vim
师太,答应老衲吧4 小时前
SQL实战训练之,力扣:2020. 无流量的帐户数(递归)
数据库·sql·leetcode
捕鲸叉4 小时前
创建线程时传递参数给线程
开发语言·c++·算法
A charmer4 小时前
【C++】vector 类深度解析:探索动态数组的奥秘
开发语言·c++·算法