Python深度学习实战-基于tensorflow原生代码搭建BP神经网络实现分类任务(附源码和实现效果)

实现功能

前面两篇文章分别介绍了两种搭建神经网络模型的方法,一种是基于tensorflow的keras框架,另一种是继承父类自定义class类,本篇文章将编写原生代码搭建BP神经网络。

实现代码

python 复制代码
import tensorflow as tf
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target

# 数据预处理
scaler = StandardScaler()
X = scaler.fit_transform(X)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 设置超参数
learning_rate = 0.001
num_epochs = 100
batch_size = 32

# 定义输入和输出的维度
input_dim = X.shape[1]
output_dim = len(set(y))

# 定义权重和偏置项
W1 = tf.Variable(tf.random.normal(shape=(input_dim, 64), dtype=tf.float64))
b1 = tf.Variable(tf.zeros(shape=(64,), dtype=tf.float64))
W2 = tf.Variable(tf.random.normal(shape=(64, 64), dtype=tf.float64))
b2 = tf.Variable(tf.zeros(shape=(64,), dtype=tf.float64))
W3 = tf.Variable(tf.random.normal(shape=(64, output_dim), dtype=tf.float64))
b3 = tf.Variable(tf.zeros(shape=(output_dim,), dtype=tf.float64))


# 定义前向传播函数
def forward_pass(X):
    X = tf.cast(X, tf.float64)
    h1 = tf.nn.relu(tf.matmul(X, W1) + b1)
    h2 = tf.nn.relu(tf.matmul(h1, W2) + b2)
    logits = tf.matmul(h2, W3) + b3
    return logits

# 定义损失函数
def loss_fn(logits, labels):
    return tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=logits))

# 定义优化器
optimizer = tf.optimizers.Adam(learning_rate)

# 定义准确率指标
accuracy_metric = tf.metrics.SparseCategoricalAccuracy()

# 定义训练步骤
def train_step(inputs, labels):
    with tf.GradientTape() as tape:
        logits = forward_pass(inputs)
        loss_value = loss_fn(logits, labels)
    gradients = tape.gradient(loss_value, [W1, b1, W2, b2, W3, b3])
    optimizer.apply_gradients(zip(gradients, [W1, b1, W2, b2, W3, b3]))
    accuracy_metric(labels, logits)
    return loss_value

# 进行训练
for epoch in range(num_epochs):
    epoch_loss = 0.0
    accuracy_metric.reset_states()

    for batch_start in range(0, len(X_train), batch_size):
        batch_end = batch_start + batch_size
        batch_X = X_train[batch_start:batch_end]
        batch_y = y_train[batch_start:batch_end]

        loss = train_step(batch_X, batch_y)
        epoch_loss += loss

    train_loss = epoch_loss / (len(X_train) // batch_size)
    train_accuracy = accuracy_metric.result()

    print(f"Epoch {epoch+1}/{num_epochs}, Loss: {train_loss:.4f}, Accuracy: {train_accuracy:.4f}")

# 进行评估
logits = forward_pass(X_test)
test_loss = loss_fn(logits, y_test)
test_accuracy = accuracy_metric(y_test, logits)

print(f"Test Loss: {test_loss:.4f}, Test Accuracy: {test_accuracy:.4f}")

实现效果

本人读研期间发表5篇SCI数据挖掘相关论文,现在某研究院从事数据挖掘相关科研工作,对数据挖掘有一定认知和理解,会结合自身科研实践经历不定期分享关于python、机器学习、深度学习基础知识与案例。

致力于 只做原创 ,以最简单的方式理解和学习,关注我一起交流成长。

邀请三个朋友关注V订阅号:数据杂坛,即可在后台联系我 获取相关数据集和源码 ,送有关数据分析、数据挖掘、机器学习、深度学习相关的电子书籍。

相关推荐
通信.萌新41 分钟前
OpenCV边沿检测(Python版)
人工智能·python·opencv
ARM+FPGA+AI工业主板定制专家43 分钟前
基于RK3576/RK3588+FPGA+AI深度学习的轨道异物检测技术研究
人工智能·深度学习
Bran_Liu1 小时前
【LeetCode 刷题】字符串-字符串匹配(KMP)
python·算法·leetcode
weixin_307779131 小时前
分析一个深度学习项目并设计算法和用PyTorch实现的方法和步骤
人工智能·pytorch·python
Channing Lewis2 小时前
flask实现重启后需要重新输入用户名而避免浏览器使用之前已经记录的用户名
后端·python·flask
Channing Lewis2 小时前
如何在 Flask 中实现用户认证?
后端·python·flask
水银嘻嘻2 小时前
【Mac】Python相关知识经验
开发语言·python·macos
小猪咪piggy2 小时前
【深度学习入门】深度学习知识点总结
人工智能·深度学习
汤姆和佩琦2 小时前
2025-1-20-sklearn学习(42) 使用scikit-learn计算 钿车罗帕,相逢处,自有暗尘随马。
人工智能·python·学习·机器学习·scikit-learn·sklearn
我的运维人生3 小时前
Java并发编程深度解析:从理论到实践
java·开发语言·python·运维开发·技术共享