python opencv之图像分割、计算面积

以下代码是一个基于K-means聚类算法进行图像分割的实现。通过读取一个彩色图像,将其转化为二维数组形式。然后使用K-means算法对像素点进行聚类,聚类个数为7。根据聚类后的标签值对像素点进行着色,并创建掩膜图像。接着使用形态学开运算和闭运算去掉周围的绿色点和填充区域内部空隙,找到最大的轮廓并计算其面积。最后再将最大轮廓绘制在原始图像上并显示出来。

python 复制代码
import cv2
import numpy as np

# 读取彩色图像
img = cv2.imread(r'C:\Users\Pictures\rm.png')

# 将图像数据转换为二维数组形式
values = img.reshape((-1, 3))
values = np.float32(values)

# K-Means聚类
K = 7
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
ret, label, center = cv2.kmeans(values, K, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)

# 创建新图像并根据聚类标签对像素点着色
segmented_img = np.zeros_like(values)
# segmented_img[np.where(label==0)[0], :] = [255, 0, 0] # 给第0类像素点赋值蓝色
segmented_img[np.where(label==1)[0], :] = [0, 255, 0] # 给第1类像素点赋值绿色
# segmented_img[np.where(label==2)[0], :] = [0, 0, 255] # 给第2类像素点赋值红色
# segmented_img[np.where(label==3)[0], :] = [0, 0, 0] # 给第3类像素点赋值黑色
# segmented_img[np.where(label==4)[0], :] = [255, 255, 255] # 给第3类像素点赋值白色

# 将分割后图像重新转化成与原图像相同的维度
segmented_img = segmented_img.reshape(img.shape)
# 创建掩膜图像
mask = np.zeros(segmented_img.shape[:2], dtype=np.uint8)
mask[np.where(np.all(segmented_img == [0, 255, 0], axis=-1))] = 255

# 进行形态学开运算,去掉周围的绿色点
kernel = np.ones((5,5),np.uint8)
opening = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)

# 进行形态学闭运算,填充区域内部空隙
closing = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, kernel)

# 找到轮廓并获取最大轮廓及其面积
contours, _ = cv2.findContours(closing, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# max_contour = max(contours, key=cv2.contourArea)
total_area = 0
for i, contour in enumerate(contours):
    # 计算轮廓面积
    area = cv2.contourArea(contour)
    total_area += area
# 绘制最大轮廓并显示在原图上
output = img.copy()
cv2.drawContours(output, contours, -1, (0, 255, 0), 2)
cv2.imshow('Contour', output)



# 显示聚类结果
cv2.imshow('Image', img)
cv2.imshow('Segmented Image', segmented_img)
cv2.imshow('Mask', closing)
# 等待关闭窗口
cv2.waitKey(0)
cv2.destroyAllWindows()

几个问题,供读者思考:

  1. 为什么选择K-means聚类算法?

  2. 为什么是聚7类?

  3. 这种方法具有通用性吗,换其他类似图片也提取准确吗?

  4. 还有更好的方法吗,如果目标的轮廓更加复杂,该怎么处理?

  5. 已经算出了图上面积,怎么计算实际面积?

相关推荐
Blossom.11837 分钟前
低代码开发:开启软件开发的新篇章
人工智能·深度学习·安全·低代码·机器学习·计算机视觉·数据挖掘
安特尼1 小时前
招行数字金融挑战赛数据赛道赛题一
人工智能·python·机器学习·金融·数据分析
serve the people1 小时前
解决osx-arm64平台上conda默认源没有提供 python=3.7 的官方编译版本的问题
开发语言·python·conda
极小狐1 小时前
如何构建容器镜像并将其推送到极狐GitLab容器镜像库?
开发语言·数据库·机器学习·gitlab·ruby
多多*2 小时前
Java反射 八股版
java·开发语言·hive·python·sql·log4j·mybatis
正在走向自律2 小时前
从0到1:Python机器学习实战全攻略(8/10)
开发语言·python·机器学习
西西弗Sisyphus3 小时前
Python 处理图像并生成 JSONL 元数据文件 - 灵活text版本
开发语言·python
Taichi呀3 小时前
PyCharm 快捷键指南
ide·python·pycharm
Stara05113 小时前
基于注意力机制与iRMB模块的YOLOv11改进模型—高效轻量目标检测新范式
人工智能·python·深度学习·神经网络·目标检测·计算机视觉·yolov11
Python猫3 小时前
付费专栏·Python潮流周刊电子书合集(epub、pdf、markdown)下载
python·计算机·pdf·电子书·资料