深度学习中Transformer的简单理解

Transformer

网络结构

Transformer也是由编码器解码器组成的。

每一层Encoder编码器 都由很多层构成的,编码器内又是**++self-attention++** ++和前馈网络++构成的。Self-attention是用来做加权平均,前馈网络用来组合。

但是decoder有点不同,多了一层Encoder-Decoder Attention 。这一层的作用是关注全局,也就是不仅仅要关注编码,还要关注解码过程。在翻译中,也就是不仅仅关注翻译后的内容,还要关注翻译前的上下文内容

Self-attention又可以拆解成多个部分,就变成了Multi-Head Attention

最终得到了,整个网络结构。

数据流程

首先,把单词做统一长度的向量化 ,再嵌入位置信息 ,这样方便单词的统一,最终是同一长度**(比如都是512位)**。

然后,再通过一个编码器,生成下一个编码。这里的Self-attention就是个零件(比如单词)自查表, 它的作用就是通过权重标明相互之间的关系并且嵌入上下文信息

具体的方法是,每个向量先嵌入位置信息

再乘以++三个训练好的向量Q、K和V矩阵++。

(我感觉,看上去像是一个数据库的查询操作)Q就是我提出了一个查询语句,K就是查询时候键值,两个相乘就得到了一个特征向量。V就像是数据库里面的值,所以,就像利用前面计算得到的特征向量分别计算V的相关性。

一个单词的K向量所有单纯的Q向量 相乘,++得到的权重就是Attention++

然后,通过归一化后,利用softmax函数过滤掉不相干的单词 。再乘以V向量,加权求和。最终得到输出向量

所有的步骤,就只需要知道,反正最后得到了单词的权重计算

用矩阵描述就是,先把X乘以三个矩阵。

然后,利用得到的Q和K,计算Z矩阵。

如果是Multihead-Attention,就会使用多个不同权重的矩阵,计算多次,得到多个Z。Multihead的作用是,消除QKV初始值的影响。那就像是八个不同的人做,更能够排除意外的影响。

最后通过一个加权平均,合成一个Z矩阵。

梳理

变形金刚要变形,从小车到机器人。

  1. 编码器一开始,先拆成零件。
  1. Self-attention就是给出一个变形说明书,说明零件之间的关系和权重。

  1. 左边编码把输入转换成了++降维的向量++ 和++零件说明书++,K和V;右边解码,还需要看两个东西,一个自己的拆解说明书和与其他零件的项目关系;一个零件一个零件的组装。
  1. 最后,线性层把向量投影到一个很长的序列中,包含所有单词的序列。
  1. softmax做归一化,得到一个最大的概率。

参考资料:

【【Transformer模型】曼妙动画轻松学,形象比喻贼好记】 https://www.bilibili.com/video/BV1MY41137AK/?share_source=copy_web\&vd_source=91d02e058149c97e25d239fb93ebef76

相关推荐
Shawn_Shawn4 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
33三 三like6 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a6 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者7 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗7 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
yLDeveloper7 小时前
从模型评估、梯度难题到科学初始化:一步步解析深度学习的训练问题
深度学习
Coder_Boy_7 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信8 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_836235868 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活