深度学习中Transformer的简单理解

Transformer

网络结构

Transformer也是由编码器解码器组成的。

每一层Encoder编码器 都由很多层构成的,编码器内又是**++self-attention++** ++和前馈网络++构成的。Self-attention是用来做加权平均,前馈网络用来组合。

但是decoder有点不同,多了一层Encoder-Decoder Attention 。这一层的作用是关注全局,也就是不仅仅要关注编码,还要关注解码过程。在翻译中,也就是不仅仅关注翻译后的内容,还要关注翻译前的上下文内容

Self-attention又可以拆解成多个部分,就变成了Multi-Head Attention

最终得到了,整个网络结构。

数据流程

首先,把单词做统一长度的向量化 ,再嵌入位置信息 ,这样方便单词的统一,最终是同一长度**(比如都是512位)**。

然后,再通过一个编码器,生成下一个编码。这里的Self-attention就是个零件(比如单词)自查表, 它的作用就是通过权重标明相互之间的关系并且嵌入上下文信息

具体的方法是,每个向量先嵌入位置信息

再乘以++三个训练好的向量Q、K和V矩阵++。

(我感觉,看上去像是一个数据库的查询操作)Q就是我提出了一个查询语句,K就是查询时候键值,两个相乘就得到了一个特征向量。V就像是数据库里面的值,所以,就像利用前面计算得到的特征向量分别计算V的相关性。

一个单词的K向量所有单纯的Q向量 相乘,++得到的权重就是Attention++

然后,通过归一化后,利用softmax函数过滤掉不相干的单词 。再乘以V向量,加权求和。最终得到输出向量

所有的步骤,就只需要知道,反正最后得到了单词的权重计算

用矩阵描述就是,先把X乘以三个矩阵。

然后,利用得到的Q和K,计算Z矩阵。

如果是Multihead-Attention,就会使用多个不同权重的矩阵,计算多次,得到多个Z。Multihead的作用是,消除QKV初始值的影响。那就像是八个不同的人做,更能够排除意外的影响。

最后通过一个加权平均,合成一个Z矩阵。

梳理

变形金刚要变形,从小车到机器人。

  1. 编码器一开始,先拆成零件。
  1. Self-attention就是给出一个变形说明书,说明零件之间的关系和权重。

  1. 左边编码把输入转换成了++降维的向量++ 和++零件说明书++,K和V;右边解码,还需要看两个东西,一个自己的拆解说明书和与其他零件的项目关系;一个零件一个零件的组装。
  1. 最后,线性层把向量投影到一个很长的序列中,包含所有单词的序列。
  1. softmax做归一化,得到一个最大的概率。

参考资料:

【【Transformer模型】曼妙动画轻松学,形象比喻贼好记】 https://www.bilibili.com/video/BV1MY41137AK/?share_source=copy_web\&vd_source=91d02e058149c97e25d239fb93ebef76

相关推荐
用户6915811416540 分钟前
Ascend Extension for PyTorch的源码解析
人工智能
用户691581141651 小时前
Ascend C的编程模型
人工智能
-Nemophilist-1 小时前
机器学习与深度学习-1-线性回归从零开始实现
深度学习·机器学习·线性回归
成富2 小时前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle
CSDN云计算2 小时前
如何以开源加速AI企业落地,红帽带来新解法
人工智能·开源·openshift·红帽·instructlab
艾派森2 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing11232 小时前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
小蜗子2 小时前
Multi‐modal knowledge graph inference via media convergenceand logic rule
人工智能·知识图谱
SpikeKing2 小时前
LLM - 使用 LLaMA-Factory 微调大模型 环境配置与训练推理 教程 (1)
人工智能·llm·大语言模型·llama·环境配置·llamafactory·训练框架
黄焖鸡能干四碗3 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书