【机器学习】决策树与分类案例分析

决策树与分类案例分析

文章目录

  • 决策树与分类案例分析
    • [1. 认识决策树](#1. 认识决策树)
    • [2. 分类](#2. 分类)
    • [3. 决策树的划分依据](#3. 决策树的划分依据)
    • [4. 决策树API](#4. 决策树API)
    • [5. 案例:鸢尾花分类](#5. 案例:鸢尾花分类)
    • [6. 决策树可视化](#6. 决策树可视化)
    • [7. 总结](#7. 总结)

1. 认识决策树

决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-else结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法。下面就来举一个例子:

通过这一个例子我们会有一个问题,为什么女生会把年龄放在第一个呢?这就是决策树的一个思想:高效性。

2. 分类

为了更好理解决策树是怎么分类的,我们给出一个例子:

现在我们有这些数据,请你根据这些数据,判断一个ID为16的人,是否能够贷款。我们现在要做的就是如何划分年龄、工作、房子、信贷这些数据。我们可以先看房子,再看工作...也可以先看工作,再看信贷...我们该如何选择来更高效的进行判断,所以我们引入信息熵、信息增益、条件熵、不确定性...

机器学习笔记02--决策树算法(手把手教你看懂)---信息熵,信息增益,增益率,基尼系数

计算过程这里就不演示了,直接出结果吧,我们以A·1,A2,A3,A4代表年龄、有工作、有自己的房子和贷款情况。最终计算的结果g(D,A1)=0.313,g(D,A2)=0.324,g(D,A3)=0.420,g(D,A4)=0.363,所以我们选择A3作为划分的第一个特征,这样我们就可以慢慢建立起一棵树。

3. 决策树的划分依据

决策树的原理不止信息增益这一种,还有其他方法。但是原理都类似,我们就不去举例计算了

  • ID3:信息增益,最大的准则
  • C4.5:信息增益比,最大的准则
  • CART
    • 分类树:基尼系数 最小的准则 再sklearn中可以选择划分的默认原则
    • 优势:划分更加细致

4. 决策树API

class sklearn.tree.DecisionTreeClassifier(criterion='gini',max_depth=None,random_state=None)

  • 决策树分类器
  • criterion:默认是'gini'系数,也可以选择信息增益的熵'entropy'
  • max_depth:树的深度大小
  • random_state:随机数种子

5. 案例:鸢尾花分类

python 复制代码
def decision_iris():
    """
    决策数对鸢尾花进行分类
    :return:
    """
    # 划分数据集
    iris = load_iris()
    # 划分数据集
    x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state= 22)
    # 决策树预估器
    estimator = DecisionTreeClassifier(criterion= "entropy")
    estimator.fit(x_train, y_train)
    # 模型评估
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)
    # 方法2:计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:", score)
    return None
复制代码
y_predict:
 [0 2 1 2 1 1 1 1 1 0 2 1 2 2 0 2 1 1 1 1 0 2 0 1 2 0 1 2 2 1 0 0 1 1 1 0 0
 0]
直接比对真实值和预测值:
 [ True  True  True  True  True  True  True False  True  True  True  True
  True  True  True  True  True  True False  True  True  True  True  True
  True  True False  True  True False  True  True  True  True  True  True
  True  True]
准确率为: 0.8947368421052632

6. 决策树可视化

保存树的结构到dot文件

sklearn.tree.export_graphviz()

  • tree.export_graphviz(estimator,out_file="./tree.dot",feature_name=[","])
python 复制代码
export_graphviz(estimator, out_file= "./tree.dot", feature_names= iris.feature_names)

生成了一个文件之后,我们需要把里面的文本导入到一个网站里面:http://webgraphviz.com/ 导入之后就成功了。

7. 总结

优点:

  • 简单的理解和解释,树木可视化

缺点:

  • 决策树学习者可以创建不能很好地推广数据的过于复杂的树,这被称为过拟合

改进:

  • 减枝cart算法
  • 随机森林
相关推荐
y***866919 小时前
C机器学习.NET生态库应用
人工智能·机器学习
deng120419 小时前
基于LeNet-5的图像分类小结
人工智能·分类·数据挖掘
ChoSeitaku19 小时前
线代强化NO20|矩阵的相似与相似对角化|综合运用
线性代数·机器学习·矩阵
二川bro20 小时前
AutoML自动化机器学习:Python实战指南
python·机器学习·自动化
大千AI助手1 天前
概率单位回归(Probit Regression)详解
人工智能·机器学习·数据挖掘·回归·大千ai助手·概率单位回归·probit回归
我不是QI1 天前
周志华《机器学习—西瓜书》二
人工智能·安全·机器学习
luoganttcc1 天前
RoboTron-Drive:自动驾驶领域的全能多模态大模型
人工智能·机器学习·自动驾驶
Ai173163915791 天前
2025.11.28国产AI计算卡参数信息汇总
服务器·图像处理·人工智能·神经网络·机器学习·视觉检测·transformer
青云交1 天前
Java 大视界 -- Java 大数据机器学习模型在电商评论情感分析与产品口碑优化中的应用
机器学习·自然语言处理·lstm·情感分析·java 大数据·电商评论·产品口碑
m0_372257021 天前
ID3 算法为什么可以用来优化决策树
算法·决策树·机器学习