【pytorch】torch.gather()函数

dim=0时

python 复制代码
index=[ [x1,x2,x2],
		[y1,y2,y2],
		[z1,z2,z3] ]

如果dim=0
填入方式为:
index=[ [(x1,0),(x2,1),(x3,2)]
		[(y1,0),(y2,1),(y3,2)]
		[(z1,0),(z2,1),(z3,2)] ]
python 复制代码
input = [
    [1, 2, 3, 4],
    [5, 6, 7, 8],
    [9, 10, 11, 12]
] # shape(3,4)
input = torch.tensor(input)
length = torch.LongTensor([
    [2,2,2,2],
    [1,1,1,1],
    [0,0,0,0],
    [0,1,2,0]
])# shape(4,4)
out = torch.gather(input, dim=0, index=length)
print(out)
python 复制代码
tensor([[9, 10, 11, 12],
        [5, 6, 7, 8],
        [1, 2, 3, 4],
        [1, 6, 11, 4]])
python 复制代码
#### dim=0后,根据new_index对input进行索引
new_index=[ [(2,0),(2,1),(2,2),(2,3)],
			[(1,0),(1,1),(1,2),(1,3)],
			[(0,0),(0,1),(0,2),(0,3)],
			[(0,0),(1,1),(2,2),(0,3)] ]
			
可以观察到第四行,行索引变为0,所以当gather函数里的index超过input的唯独时,会从0重新计数。

dim=1时

python 复制代码
input = [
    [1, 2, 3, 4],
    [5, 6, 7, 8],
    [9, 10, 11, 12]
] # shape(3,4)
input = torch.tensor(input)
length = torch.LongTensor([
    [2,2,2,2],
    [1,1,1,1],
    [0,1,2,0]
]) # shape(3,4)
out = torch.gather(input, dim=1, index=length)
print(out)
python 复制代码
tensor([[3, 3, 3, 3],
        [6, 6, 6, 6],
        [9, 10, 11, 9]])
python 复制代码
new_index = [
	[(0,2),(0,2),(0,2),(0,2)],
	[(1,1),(1,1),(1,1),(1,1)],
	[(2,0),(2,1),(2,2)(2,0)]
]
相关推荐
倔强青铜三2 分钟前
苦练Python第71天:一行代码就搭出服务器?别眨眼,http.server真有这么爽!
人工智能·python·面试
倔强青铜三3 分钟前
苦练Python第70天:征服网络请求!揭开urllib.request的神秘面纱
人工智能·python·面试
倔强青铜三4 分钟前
苦练Python第72天:colorsys 模块 10 分钟入门,让你的代码瞬间“好色”!
人工智能·python·面试
MicroTech202513 分钟前
MLGO微算法科技发布多用户协同推理批处理优化系统,重构AI推理服务效率与能耗新标准
人工智能·科技·算法
说私域17 分钟前
互联网企业外化能力与实体零售融合:基于定制开发开源AI智能名片S2B2C商城小程序的实践探索
人工智能·开源·零售
沫儿笙21 分钟前
FANUC发那科焊接机器人薄板焊接节气
人工智能·机器人
IT_陈寒26 分钟前
震惊!我用JavaScript实现了Excel的这5个核心功能,同事直呼内行!
前端·人工智能·后端
淞宇智能科技31 分钟前
固态电池五大核心设备全解析
大数据·人工智能·自动化
AndrewHZ44 分钟前
【图像处理基石】多波段图像融合算法入门:从概念到实践
图像处理·人工智能·算法·图像融合·遥感图像·多波段·变换域
胖哥真不错1 小时前
Python基于PyTorch实现多输入多输出进行BP神经网络回归预测项目实战
pytorch·python·毕业设计·论文·毕设·多输入多输出·bp神经网络回归预测