【pytorch】torch.gather()函数

dim=0时

python 复制代码
index=[ [x1,x2,x2],
		[y1,y2,y2],
		[z1,z2,z3] ]

如果dim=0
填入方式为:
index=[ [(x1,0),(x2,1),(x3,2)]
		[(y1,0),(y2,1),(y3,2)]
		[(z1,0),(z2,1),(z3,2)] ]
python 复制代码
input = [
    [1, 2, 3, 4],
    [5, 6, 7, 8],
    [9, 10, 11, 12]
] # shape(3,4)
input = torch.tensor(input)
length = torch.LongTensor([
    [2,2,2,2],
    [1,1,1,1],
    [0,0,0,0],
    [0,1,2,0]
])# shape(4,4)
out = torch.gather(input, dim=0, index=length)
print(out)
python 复制代码
tensor([[9, 10, 11, 12],
        [5, 6, 7, 8],
        [1, 2, 3, 4],
        [1, 6, 11, 4]])
python 复制代码
#### dim=0后,根据new_index对input进行索引
new_index=[ [(2,0),(2,1),(2,2),(2,3)],
			[(1,0),(1,1),(1,2),(1,3)],
			[(0,0),(0,1),(0,2),(0,3)],
			[(0,0),(1,1),(2,2),(0,3)] ]
			
可以观察到第四行,行索引变为0,所以当gather函数里的index超过input的唯独时,会从0重新计数。

dim=1时

python 复制代码
input = [
    [1, 2, 3, 4],
    [5, 6, 7, 8],
    [9, 10, 11, 12]
] # shape(3,4)
input = torch.tensor(input)
length = torch.LongTensor([
    [2,2,2,2],
    [1,1,1,1],
    [0,1,2,0]
]) # shape(3,4)
out = torch.gather(input, dim=1, index=length)
print(out)
python 复制代码
tensor([[3, 3, 3, 3],
        [6, 6, 6, 6],
        [9, 10, 11, 9]])
python 复制代码
new_index = [
	[(0,2),(0,2),(0,2),(0,2)],
	[(1,1),(1,1),(1,1),(1,1)],
	[(2,0),(2,1),(2,2)(2,0)]
]
相关推荐
kekekka4 分钟前
实测验证|2026市场部有限预算破局:以178软文网为核心,搭建全域覆盖增长系统
大数据·人工智能
EasyCVR4 分钟前
视频汇聚平台EasyCVR如何为活动安保打造“智慧天眼”系统?
人工智能·音视频
数字冰雹5 分钟前
从“可视”到“可智”——“人工智能+”行动下,数字孪生与 AI 的战略交汇机遇
人工智能
大厂技术总监下海5 分钟前
可视化编排 + AI Copilot + 私有知识库:Sim如何打造下一代AI智能体开发平台?
人工智能·开源·copilot
逸俊晨晖9 分钟前
昇腾310P算力卡 10路1080p实时YOLOv8目标检测
人工智能·yolo·目标检测·昇腾
sunywz11 分钟前
【JVM】(2)java类加载机制
java·jvm·python
电商API_1800790524713 分钟前
B站视频列表与详情数据API调用完全指南
大数据·人工智能·爬虫·数据分析
Silence_Jy14 分钟前
GPU架构
python
kwg12619 分钟前
本地搭建 OPC UA MCP 服务
python·agent·mcp
belldeep20 分钟前
python:mnist 数据集下载,parse
python·numpy·mnist