【pytorch】torch.gather()函数

dim=0时

python 复制代码
index=[ [x1,x2,x2],
		[y1,y2,y2],
		[z1,z2,z3] ]

如果dim=0
填入方式为:
index=[ [(x1,0),(x2,1),(x3,2)]
		[(y1,0),(y2,1),(y3,2)]
		[(z1,0),(z2,1),(z3,2)] ]
python 复制代码
input = [
    [1, 2, 3, 4],
    [5, 6, 7, 8],
    [9, 10, 11, 12]
] # shape(3,4)
input = torch.tensor(input)
length = torch.LongTensor([
    [2,2,2,2],
    [1,1,1,1],
    [0,0,0,0],
    [0,1,2,0]
])# shape(4,4)
out = torch.gather(input, dim=0, index=length)
print(out)
python 复制代码
tensor([[9, 10, 11, 12],
        [5, 6, 7, 8],
        [1, 2, 3, 4],
        [1, 6, 11, 4]])
python 复制代码
#### dim=0后,根据new_index对input进行索引
new_index=[ [(2,0),(2,1),(2,2),(2,3)],
			[(1,0),(1,1),(1,2),(1,3)],
			[(0,0),(0,1),(0,2),(0,3)],
			[(0,0),(1,1),(2,2),(0,3)] ]
			
可以观察到第四行,行索引变为0,所以当gather函数里的index超过input的唯独时,会从0重新计数。

dim=1时

python 复制代码
input = [
    [1, 2, 3, 4],
    [5, 6, 7, 8],
    [9, 10, 11, 12]
] # shape(3,4)
input = torch.tensor(input)
length = torch.LongTensor([
    [2,2,2,2],
    [1,1,1,1],
    [0,1,2,0]
]) # shape(3,4)
out = torch.gather(input, dim=1, index=length)
print(out)
python 复制代码
tensor([[3, 3, 3, 3],
        [6, 6, 6, 6],
        [9, 10, 11, 9]])
python 复制代码
new_index = [
	[(0,2),(0,2),(0,2),(0,2)],
	[(1,1),(1,1),(1,1),(1,1)],
	[(2,0),(2,1),(2,2)(2,0)]
]
相关推荐
我送炭你添花5 小时前
Pelco KBD300A 模拟器:03.Pelco-P 协议 8 字节完整拆解 + 与 Pelco-D 一一对应终极对照表
python·测试工具·运维开发
It's now5 小时前
Spring AI 基础开发流程
java·人工智能·后端·spring
Glad_R5 小时前
巧用AI流程图,让信息呈现更全面
人工智能·信息可视化·产品运营·流程图·产品经理
R.lin5 小时前
Java 8日期时间API完全指南
java·开发语言·python
西南胶带の池上桜5 小时前
1.Pytorch模型应用(线性与非线性预测)
人工智能·pytorch·python
杀生丸学AI5 小时前
【无标题】VGGT4D:用于4D场景重建的视觉Transformer运动线索挖掘
人工智能·深度学习·3d·aigc·transformer·三维重建·视觉大模型
小和尚同志6 小时前
还在手动配置?这款开源软件让你一键配置 Claude Code 和 Codex
人工智能·aigc
阿正的梦工坊6 小时前
ProRL:延长强化学习训练,扩展大语言模型推理边界——NeurIPS 2025论文解读
人工智能·语言模型·自然语言处理
致Great6 小时前
Ollama 进阶指南
人工智能·gpt·chatgpt·agent·智能体