08 MIT线性代数-求解Ax=b:可解性与结构Complete Solution of Ax=b

1. 可解的条件 Solvability conditions on b

检验Ax =b 是否可解的方法是对增广矩阵进行行消元。如果矩阵A 的行被完全消去的话,则对应的b的分量也要得0

两条关于b的限制条件(等价)

  1. if a comb. of rows of A gives zero row, then same comb. of enties of b must give 0

  2. Ax=b solvable when b is in C(A)

2. 通解 Complete solution

to find complete soln's to Ax=b 我们首先检验方程是否可解,然后找到一个特解。将特解和矩阵零空间的向量相加即为方程的通解

2.1. 特解 A particular solution

Ax =b特解的方法是将自由变量均赋值为0,求解其主变量

xparticular : set all free variables to zero, x2=x4=0

solve Ax=b for pivot variables

x3=3/2,x1=-2

特解为x p=

2.2. 零空间进行线性组合 Combined with nullspace

Ax =b的通解为: Xc = Xp + Xn

特解 particualr 基础解系special solutions 矩阵的零空间N(A )是R 4空间中的二维子空间,方程的解Ax =b 构成了穿过x p点并和矩阵零空间平行的"平面"。但该"平面"并不是R4空间的子空间

3. 秩 Rank

矩阵的秩等于矩阵的主元数。如果mxn矩阵的秩为r,则必有r<=m且r<=n

满秩(full rank):

1. 列满秩full column rank means:r=n no free variables

零空间N(A )之内只有零向量。方程无解或者有唯一解xp unique solution if it exists (0 or 1 solution)

2. 行满秩full row rank means:r=m <n

Can solve Ax=b for every b left with n-r = n-m free variables

3. 满秩 r=m=n,

矩阵可逆。零空间只有零向量,无论b 取何值,方程Ax =b都有唯一解

1 solution to Ax=b

4. summary:

the rank tells you everything about the number of solutions

相关推荐
这个男人是小帅29 分钟前
【GAT】 代码详解 (1) 运行方法【pytorch】可运行版本
人工智能·pytorch·python·深度学习·分类
小白学大数据4 小时前
Python爬虫开发中的分析与方案制定
开发语言·c++·爬虫·python
phoenix@Capricornus4 小时前
循环矩阵和BCCB矩阵与向量乘积的快速计算——矩阵向量乘积与频域乘积之间的转换
线性代数·矩阵
Shy9604184 小时前
Doc2Vec句子向量
python·语言模型
秀儿还能再秀7 小时前
机器学习——简单线性回归、逻辑回归
笔记·python·学习·机器学习
学术搬运工7 小时前
【珠海科技学院主办,暨南大学协办 | IEEE出版 | EI检索稳定 】2024年健康大数据与智能医疗国际会议(ICHIH 2024)
大数据·图像处理·人工智能·科技·机器学习·自然语言处理
阿_旭8 小时前
如何使用OpenCV和Python进行相机校准
python·opencv·相机校准·畸变校准
幸运的星竹8 小时前
使用pytest+openpyxl做接口自动化遇到的问题
python·自动化·pytest
Chatopera 研发团队9 小时前
机器学习 - 为 Jupyter Notebook 安装新的 Kernel
人工智能·机器学习·jupyter