07 MIT线性代数-求解Ax=0:主变量,特解 pivot variables, special solutions

前面定义了矩阵的列空间和零空间,那么如何求得这些子空间呢?

1. 计算零空间 Nullspace

A 的零空间即满足Ax =0 的所有x构成的向量空间

对于矩阵A 进行"行操作"并不会改变Ax =b的解,因此也不会改变零空间 unchanged

第一步消元:

echelon 阶梯型 pivot columns and free columns

++rank of A = # of pivots r=2 = # of pivot variables++

++n-r = 4-2 =# of free variables++

2. 特解 Special solutions

当我们将系数矩阵变换为上三角阵U 时,就可以用回代求得方程Ux =0的解--x1, x3可以通过回代得到 UX=0

对自由变量(free variable)x2和x4我们可以进行赋值

例如令x2=1而x4=0

可得一解

x=

取自由变量中x2=0而x4=1

可得到另一解

x=

矩阵A的零空间就是这些"特解" special solution 向量的线性组合所构成的向量空间

x=c+d which is a line

n-r=特解的数目=零空间的维数

3. 行最简阶梯矩阵 Reduced row echelon form (rref)

rref(A)

notice that = I is in pivot rows/cols

在矩阵中主元行和主元列的交汇处存在一个单位阵。通过"列交换",可以将矩阵R 中的主元列集中在左侧,从而在左上角形成这个单位阵,而将自由列集中在矩阵的右侧。如果矩阵A 中的某些行是线性相关的,则在矩阵R 的下半部分就会出现一些完全为0的行向量

rref form

nullspace matrix ( columns = special solutions)

RN=0

Xpivot=-FXfree

eg.

相关推荐
有为少年17 小时前
带噪学习 | Ambient Diffusion (NeurIPS 2023)下篇
人工智能·深度学习·神经网络·学习·机器学习·计算机视觉
upper202017 小时前
数据挖掘12
人工智能·数据挖掘
yohalaser17 小时前
追光者的“速度游戏“:光伏测试设备的技术迭代之路
人工智能·功能测试·可用性测试
翼龙云_cloud17 小时前
阿里云云渠道商:如何选择阿里云 GPU 配置方案?
服务器·人工智能·阿里云·云计算
1+2单片机电子设计17 小时前
基于 STM32 的人脸识别系统
网络·人工智能
2401_8414956417 小时前
【自然语言处理】深度拆解自然语言处理(NLP)的知识体系:从理论根基到工程落地的全维度探索
人工智能·自然语言处理·语言学基础·数学与统计学·计算机科学与人工智能·领域特定知识·工程实践知识
知了一笑17 小时前
一文读懂RAG架构如何助力AI
人工智能·rag架构
娱乐我有17 小时前
北京深梵科技公益捐赠二十万 赋能流浪动物温暖过冬
人工智能·科技·json
JoannaJuanCV17 小时前
自动驾驶—CARLA仿真(21)manual_control_carsim demo
人工智能·机器学习·自动驾驶
丁劲犇17 小时前
使用AI辅助开发SDR-多相滤波DDC/DUC工具核心原理详解
人工智能·软件无线电·sdr·ddc·duc·多相滤波·数字下变频