07 MIT线性代数-求解Ax=0:主变量,特解 pivot variables, special solutions

前面定义了矩阵的列空间和零空间,那么如何求得这些子空间呢?

1. 计算零空间 Nullspace

A 的零空间即满足Ax =0 的所有x构成的向量空间

对于矩阵A 进行"行操作"并不会改变Ax =b的解,因此也不会改变零空间 unchanged

第一步消元:

echelon 阶梯型 pivot columns and free columns

++rank of A = # of pivots r=2 = # of pivot variables++

++n-r = 4-2 =# of free variables++

2. 特解 Special solutions

当我们将系数矩阵变换为上三角阵U 时,就可以用回代求得方程Ux =0的解--x1, x3可以通过回代得到 UX=0

对自由变量(free variable)x2和x4我们可以进行赋值

例如令x2=1而x4=0

可得一解

x=

取自由变量中x2=0而x4=1

可得到另一解

x=

矩阵A的零空间就是这些"特解" special solution 向量的线性组合所构成的向量空间

x=c+d which is a line

n-r=特解的数目=零空间的维数

3. 行最简阶梯矩阵 Reduced row echelon form (rref)

rref(A)

notice that = I is in pivot rows/cols

在矩阵中主元行和主元列的交汇处存在一个单位阵。通过"列交换",可以将矩阵R 中的主元列集中在左侧,从而在左上角形成这个单位阵,而将自由列集中在矩阵的右侧。如果矩阵A 中的某些行是线性相关的,则在矩阵R 的下半部分就会出现一些完全为0的行向量

rref form

nullspace matrix ( columns = special solutions)

RN=0

Xpivot=-FXfree

eg.

相关推荐
沃达德软件1 小时前
智慧警务图像融合大数据
大数据·图像处理·人工智能·目标检测·计算机视觉·目标跟踪
QxQ么么2 小时前
移远通信(桂林)26校招-助理AI算法工程师-面试纪录
人工智能·python·算法·面试
狂野有理2 小时前
线性代数【第五章:特征值与特征向量】
线性代数
愤怒的可乐2 小时前
从零构建大模型智能体:统一消息格式,快速接入大语言模型
人工智能·语言模型·自然语言处理
每天一个java小知识4 小时前
AI Agent
人工智能
猫头虎4 小时前
如何解决 pip install 编译报错 fatal error: hdf5.h: No such file or directory(h5py)问题
人工智能·python·pycharm·开源·beautifulsoup·ai编程·pip
龙赤子4 小时前
人工智能AI的大框架
人工智能
比奥利奥还傲.4 小时前
本地+AI+大模型自由用!Cherry+Studio打破局域网限制
人工智能
雪碧聊技术4 小时前
深度学习、机器学习、人工智能三者的关系
人工智能·深度学习·机器学习
β添砖java4 小时前
机器学习初级
人工智能·机器学习