07 MIT线性代数-求解Ax=0:主变量,特解 pivot variables, special solutions

前面定义了矩阵的列空间和零空间,那么如何求得这些子空间呢?

1. 计算零空间 Nullspace

A 的零空间即满足Ax =0 的所有x构成的向量空间

对于矩阵A 进行"行操作"并不会改变Ax =b的解,因此也不会改变零空间 unchanged

第一步消元:

echelon 阶梯型 pivot columns and free columns

++rank of A = # of pivots r=2 = # of pivot variables++

++n-r = 4-2 =# of free variables++

2. 特解 Special solutions

当我们将系数矩阵变换为上三角阵U 时,就可以用回代求得方程Ux =0的解--x1, x3可以通过回代得到 UX=0

对自由变量(free variable)x2和x4我们可以进行赋值

例如令x2=1而x4=0

可得一解

x=

取自由变量中x2=0而x4=1

可得到另一解

x=

矩阵A的零空间就是这些"特解" special solution 向量的线性组合所构成的向量空间

x=c+d which is a line

n-r=特解的数目=零空间的维数

3. 行最简阶梯矩阵 Reduced row echelon form (rref)

rref(A)

notice that = I is in pivot rows/cols

在矩阵中主元行和主元列的交汇处存在一个单位阵。通过"列交换",可以将矩阵R 中的主元列集中在左侧,从而在左上角形成这个单位阵,而将自由列集中在矩阵的右侧。如果矩阵A 中的某些行是线性相关的,则在矩阵R 的下半部分就会出现一些完全为0的行向量

rref form

nullspace matrix ( columns = special solutions)

RN=0

Xpivot=-FXfree

eg.

相关推荐
缘分开始t6212382 分钟前
全球直播新标杆:DeepSeek融合全平台AI无人直播,构建直播流量永动机!
人工智能·智能电视
天天向上杰27 分钟前
通义灵码AI程序员
人工智能·aigc·ai编程
sendnews38 分钟前
AI赋能教育,小猿搜题系列产品携手DeepSeek打造个性化学习新体验
人工智能
悠然的笔记本40 分钟前
机器学习,我们主要学习什么?
机器学习
紫雾凌寒1 小时前
解锁机器学习核心算法|神经网络:AI 领域的 “超级引擎”
人工智能·python·神经网络·算法·机器学习·卷积神经网络
WBingJ1 小时前
2月17日深度学习日记
人工智能
zhengyawen6661 小时前
深度学习之图像分类(一)
人工智能·深度学习·分类
莫莫莫i1 小时前
拆解微软CEO纳德拉战略蓝图:AI、量子计算、游戏革命如何改写未来规则!
人工智能·微软·量子计算
C#Thread1 小时前
机器视觉--图像的运算(加法)
图像处理·人工智能·计算机视觉
无极工作室(网络安全)1 小时前
机器学习小项目之鸢尾花分类
人工智能·机器学习·分类