07 MIT线性代数-求解Ax=0:主变量,特解 pivot variables, special solutions

前面定义了矩阵的列空间和零空间,那么如何求得这些子空间呢?

1. 计算零空间 Nullspace

A 的零空间即满足Ax =0 的所有x构成的向量空间

对于矩阵A 进行"行操作"并不会改变Ax =b的解,因此也不会改变零空间 unchanged

第一步消元:

echelon 阶梯型 pivot columns and free columns

++rank of A = # of pivots r=2 = # of pivot variables++

++n-r = 4-2 =# of free variables++

2. 特解 Special solutions

当我们将系数矩阵变换为上三角阵U 时,就可以用回代求得方程Ux =0的解--x1, x3可以通过回代得到 UX=0

对自由变量(free variable)x2和x4我们可以进行赋值

例如令x2=1而x4=0

可得一解

x=

取自由变量中x2=0而x4=1

可得到另一解

x=

矩阵A的零空间就是这些"特解" special solution 向量的线性组合所构成的向量空间

x=c+d which is a line

n-r=特解的数目=零空间的维数

3. 行最简阶梯矩阵 Reduced row echelon form (rref)

rref(A)

notice that = I is in pivot rows/cols

在矩阵中主元行和主元列的交汇处存在一个单位阵。通过"列交换",可以将矩阵R 中的主元列集中在左侧,从而在左上角形成这个单位阵,而将自由列集中在矩阵的右侧。如果矩阵A 中的某些行是线性相关的,则在矩阵R 的下半部分就会出现一些完全为0的行向量

rref form

nullspace matrix ( columns = special solutions)

RN=0

Xpivot=-FXfree

eg.

相关推荐
Codelinghu1 分钟前
「 LLM实战 - 企业 」构建企业级RAG系统:基于Milvus向量数据库的高效检索实践
人工智能·后端·llm
幻云20105 分钟前
Next.js指南:从入门到精通
开发语言·javascript·人工智能·python·架构
智算菩萨12 分钟前
Anthropic Claude 4.5:AI分层编排的革命,成本、速度与能力的新平衡
前端·人工智能
小Pawn爷16 分钟前
12. 智能与风险并存:金融AI的成本,合规与伦理平衡术
人工智能·金融·llm·合规
●VON16 分钟前
AI 保险机制:为智能时代的不确定性兜底
人工智能·学习·安全·制造·von
开发者导航17 分钟前
【开发者导航】一键解决AI生成内容格式复制难题的剪贴板工具:PasteMD
人工智能
bu_shuo29 分钟前
将AI生成的数学公式正确复制到word中
人工智能·chatgpt·word·latex
AI科技星32 分钟前
光速飞行器动力学方程的第一性原理推导、验证与范式革命
数据结构·人工智能·线性代数·算法·机器学习·概率论
摘星编程35 分钟前
RAG的下一站:检索增强生成如何重塑企业知识中枢?
android·人工智能
Aaron_94538 分钟前
BitNet:1-bit大语言模型的高效推理框架详解
人工智能·语言模型·自然语言处理