07 MIT线性代数-求解Ax=0:主变量,特解 pivot variables, special solutions

前面定义了矩阵的列空间和零空间,那么如何求得这些子空间呢?

1. 计算零空间 Nullspace

A 的零空间即满足Ax =0 的所有x构成的向量空间

对于矩阵A 进行"行操作"并不会改变Ax =b的解,因此也不会改变零空间 unchanged

第一步消元:

echelon 阶梯型 pivot columns and free columns

++rank of A = # of pivots r=2 = # of pivot variables++

++n-r = 4-2 =# of free variables++

2. 特解 Special solutions

当我们将系数矩阵变换为上三角阵U 时,就可以用回代求得方程Ux =0的解--x1, x3可以通过回代得到 UX=0

对自由变量(free variable)x2和x4我们可以进行赋值

例如令x2=1而x4=0

可得一解

x=

取自由变量中x2=0而x4=1

可得到另一解

x=

矩阵A的零空间就是这些"特解" special solution 向量的线性组合所构成的向量空间

x=c+d which is a line

n-r=特解的数目=零空间的维数

3. 行最简阶梯矩阵 Reduced row echelon form (rref)

rref(A)

notice that = I is in pivot rows/cols

在矩阵中主元行和主元列的交汇处存在一个单位阵。通过"列交换",可以将矩阵R 中的主元列集中在左侧,从而在左上角形成这个单位阵,而将自由列集中在矩阵的右侧。如果矩阵A 中的某些行是线性相关的,则在矩阵R 的下半部分就会出现一些完全为0的行向量

rref form

nullspace matrix ( columns = special solutions)

RN=0

Xpivot=-FXfree

eg.

相关推荐
小天才才8 分钟前
前沿论文汇总(机器学习/深度学习/大模型/搜广推/自然语言处理)
人工智能·深度学习·机器学习·自然语言处理
MPCTHU14 分钟前
机器学习的数学基础:神经网络
机器学习
新加坡内哥谈技术38 分钟前
Meta计划借助AI实现广告创作全自动化
运维·人工智能·自动化
狐凄1 小时前
Python实例题:Python计算线性代数
开发语言·python·线性代数
天宫风子1 小时前
线性代数小述(二之前)
线性代数
西猫雷婶1 小时前
pytorch基本运算-导数和f-string
人工智能·pytorch·python
Johny_Zhao1 小时前
华为MAAS、阿里云PAI、亚马逊AWS SageMaker、微软Azure ML各大模型深度分析对比
linux·人工智能·ai·信息安全·云计算·系统运维
顽强卖力1 小时前
第二十八课:深度学习及pytorch简介
人工智能·pytorch·深度学习
述雾学java1 小时前
深入理解 transforms.Normalize():PyTorch 图像预处理中的关键一步
人工智能·pytorch·python
武子康1 小时前
大数据-276 Spark MLib - 基础介绍 机器学习算法 Bagging和Boosting区别 GBDT梯度提升树
大数据·人工智能·算法·机器学习·语言模型·spark-ml·boosting