聊聊RNN与seq2seq

seq2seq模型也称为Encoder-Decoder模型。顾名思义,这个模型有两个模块------Encoder(编码器)和Decoder(解码器)。编码器对输入数据进行编码,解码器对被编码的数据进行解码。此时编码器编码的信息浓缩了翻译所必需的信息,解码器基于这个浓缩的信息生成目标文本。

这里的数据一般指时序数据,即按时间顺序记录的数据列,具有可比性和结构化性。

编码器

以RNN为例,设计一个编码器结构如下

编码器利用RNN将时序数据转换为隐藏状态h。这里的RNN使用的是LSTM模型,编码器输出的向量h是LSTM层的最后一个隐藏状态,其中编码了翻译输入文本所需的信息。

解码器

LSTM层会接收编码器层最后隐藏状态输出的向量h。上一个层的输出预测会作为下一个层的输入参数,如此循环下去。

这一分隔符(特殊符号)。这个分隔符被用作通知解码器开始生成文本的信号。另外,解码器采样到 出现为止,所以它也是结束信号。也就是说,分隔符 可以用来指示解码器的"开始/结束"。

整体结构

连接编码器和解码器后的seq2seq整体结构如下,可以看出seq2seq是组合了两个RNN的神经网络。

对于seq2seq序列模型更多解释可看 博客

相关推荐
weixin_5152024910 小时前
第R3周:RNN-心脏病预测
人工智能·rnn·深度学习
MarkHD2 天前
第二十四天 循环神经网络(RNN)基本原理与实现
人工智能·rnn·深度学习
weixin_750335523 天前
李沐 X 动手学深度学习--第八章 循环神经网络
人工智能·rnn·深度学习
MarkHD3 天前
第二十四天 循环神经网络(RNN)LSTM与GRU
rnn·gru·lstm
凳子花❀3 天前
CNN、RNN、LSTM和Transformer之间的区别和联系
rnn·yolo·cnn·lstm·transformer
牧歌悠悠4 天前
【深度学习】零基础介绍循环神经网络(RNN)
人工智能·rnn·深度学习
杨善锦6 天前
RNN网络详解
人工智能·rnn·深度学习
O_o3816 天前
LSTM (Long Short-Term Memory)
rnn·深度学习·lstm
AI科研技术派6 天前
颠覆LSTM!贝叶斯优化+LSTM+时序预测=Nature子刊!
人工智能·rnn·lstm
PHOT02YNTHES1A7 天前
实验16 循环神经网络(3)
人工智能·rnn·深度学习