聊聊RNN与seq2seq

seq2seq模型也称为Encoder-Decoder模型。顾名思义,这个模型有两个模块------Encoder(编码器)和Decoder(解码器)。编码器对输入数据进行编码,解码器对被编码的数据进行解码。此时编码器编码的信息浓缩了翻译所必需的信息,解码器基于这个浓缩的信息生成目标文本。

这里的数据一般指时序数据,即按时间顺序记录的数据列,具有可比性和结构化性。

编码器

以RNN为例,设计一个编码器结构如下

编码器利用RNN将时序数据转换为隐藏状态h。这里的RNN使用的是LSTM模型,编码器输出的向量h是LSTM层的最后一个隐藏状态,其中编码了翻译输入文本所需的信息。

解码器

LSTM层会接收编码器层最后隐藏状态输出的向量h。上一个层的输出预测会作为下一个层的输入参数,如此循环下去。

这一分隔符(特殊符号)。这个分隔符被用作通知解码器开始生成文本的信号。另外,解码器采样到 出现为止,所以它也是结束信号。也就是说,分隔符 可以用来指示解码器的"开始/结束"。

整体结构

连接编码器和解码器后的seq2seq整体结构如下,可以看出seq2seq是组合了两个RNN的神经网络。

对于seq2seq序列模型更多解释可看 博客

相关推荐
vvilkim7 小时前
PyTorch 中的循环神经网络 (RNN/LSTM):时序数据处理实战指南
pytorch·rnn·lstm
THMAIL9 小时前
机器学习从入门到精通 - 循环神经网络(RNN)与LSTM:时序数据预测圣经
人工智能·python·rnn·算法·机器学习·逻辑回归·lstm
会写代码的饭桶1 天前
Transformers 学习入门:前置知识补漏
rnn·transformer·词嵌入·mlp·反向传播·神经网络基础
addaduvyhup2 天前
【RNN-LSTM-GRU】第一篇 序列建模基础:理解数据的“顺序”之力
rnn·gru·lstm
addaduvyhup2 天前
【RNN-LSTM-GRU】第二篇 序列模型原理深度剖析:从RNN到LSTM与GRU
rnn·gru·lstm
fantasy_arch5 天前
8.5 循环神经网络的从零开始实现
人工智能·rnn·深度学习
weixin_456904276 天前
从RNN到BERT
人工智能·rnn·bert
love you joyfully9 天前
循环神经网络——pytorch实现循环神经网络(RNN、GRU、LSTM)
人工智能·pytorch·rnn·深度学习·gru·循环神经网络
Hao想睡觉13 天前
循环神经网络(RNN)、LSTM 与 GRU (一)
rnn·gru·lstm
失散1315 天前
自然语言处理——03 RNN及其变体
人工智能·rnn·自然语言处理·gru·lstm