目标检测中常见指标 - mAP

文章目录

    • [1. 评价指标](#1. 评价指标)
    • [2. 计算示例](#2. 计算示例)
    • [3. COCO评价指标](#3. COCO评价指标)

1. 评价指标

在目标检测领域,比较常用的两个公开数据集:pascal voccoco

目标检测与图像分类明显差距是很大的,在图像分类中,我们通常是统计在验证集当中,分类正确的个数除以验证集的总样本数就能得到准确率。

那么对于目标检测,怎么样才能算检测正确呢?

TP(True Positive):IoU>0.5的检测框数量(同一Ground Truth只计算一次)

FP(False Positive):IoU<=0.5的检测框(或者是检测到同一个GT到多余检测框的数量)

FN(False Negative):没有检测到的GT的数量

Precision: T P T P + F P \frac{TP}{TP+FP} TP+FPTP模型预测的所有目标中,预测正确的比例 - 查准率

Recall: T P T P + F N \frac{TP}{TP+FN} TP+FNTP所有真实目标中,模型预测正确的目标比例 - 查全率

AP:P-R曲线下面积

P-R曲线:Precision-Recall曲线

mAP:mean Average Precision,即各类别AP的平均值


2. 计算示例

当我们recall有重复值时,只用保留Precision值最大的信息。

以Recall为横坐标,以Precision为纵坐标,得到PR曲线。

阴影部分的免费则就说AP值,即
A P = 0.57 × 1.0 + ( 0.71 − 0.57 ) × 0.71 = 0.57 + 0.0994 = 0.6694 AP = 0.57\times 1.0 + (0.71-0.57)\times 0.71 = 0.57+0.0994 = 0.6694 AP=0.57×1.0+(0.71−0.57)×0.71=0.57+0.0994=0.6694

这里求的的AP为对应猫这个类别的AP值。使用同样的方法求出其他类别的AP值,最后求出所有类别AP的均值,就得到了mAP。

注意:

在我们所有网络给出的结果都是经过非极大值抑制处理后所得到的目标边界框。


3. COCO评价指标

官网文档https://cocodataset.org/#detection-eval

相关推荐
莫非王土也非王臣12 小时前
迁移学习详情介绍
人工智能·机器学习·迁移学习
AI即插即用12 小时前
即插即用系列 | CVPR 2025 MK-UNet: 多核深度可分离卷积,重新定义轻量级医学图像分割
图像处理·人工智能·深度学习·神经网络·计算机视觉·视觉检测
汽车仪器仪表相关领域12 小时前
全程高温伴热,NOx瞬态精准捕捉:MEXA-1170HCLD加热型NOx测定装置项目实战全解
大数据·服务器·网络·人工智能·功能测试·单元测试·可用性测试
发光的叮当猫12 小时前
什么是梯度
人工智能·深度学习
Struart_R12 小时前
VideoLLM相关论文(二)
计算机视觉·大语言模型·强化学习·多模态·r1
淡忘旧梦12 小时前
词错误率/WER算法讲解
人工智能·笔记·python·深度学习·算法
2501_9361460412 小时前
柿子目标检测实战:YOLO11-HSFPN网络优化与性能分析
人工智能·目标检测·计算机视觉
程途拾光15812 小时前
AI从工具向自主决策者的身份
人工智能
_codemonster12 小时前
手语识别及翻译项目实战系列(一)环境准备
人工智能·python·计算机视觉
AAD5558889913 小时前
【YOLO13项目实战】(5)镰刀目标检测与识别_C3k2_MBRConv3改进版
人工智能·目标检测·计算机视觉