目标检测中常见指标 - mAP

文章目录

    • [1. 评价指标](#1. 评价指标)
    • [2. 计算示例](#2. 计算示例)
    • [3. COCO评价指标](#3. COCO评价指标)

1. 评价指标

在目标检测领域,比较常用的两个公开数据集:pascal voccoco

目标检测与图像分类明显差距是很大的,在图像分类中,我们通常是统计在验证集当中,分类正确的个数除以验证集的总样本数就能得到准确率。

那么对于目标检测,怎么样才能算检测正确呢?

TP(True Positive):IoU>0.5的检测框数量(同一Ground Truth只计算一次)

FP(False Positive):IoU<=0.5的检测框(或者是检测到同一个GT到多余检测框的数量)

FN(False Negative):没有检测到的GT的数量

Precision: T P T P + F P \frac{TP}{TP+FP} TP+FPTP模型预测的所有目标中,预测正确的比例 - 查准率

Recall: T P T P + F N \frac{TP}{TP+FN} TP+FNTP所有真实目标中,模型预测正确的目标比例 - 查全率

AP:P-R曲线下面积

P-R曲线:Precision-Recall曲线

mAP:mean Average Precision,即各类别AP的平均值


2. 计算示例

当我们recall有重复值时,只用保留Precision值最大的信息。

以Recall为横坐标,以Precision为纵坐标,得到PR曲线。

阴影部分的免费则就说AP值,即
A P = 0.57 × 1.0 + ( 0.71 − 0.57 ) × 0.71 = 0.57 + 0.0994 = 0.6694 AP = 0.57\times 1.0 + (0.71-0.57)\times 0.71 = 0.57+0.0994 = 0.6694 AP=0.57×1.0+(0.71−0.57)×0.71=0.57+0.0994=0.6694

这里求的的AP为对应猫这个类别的AP值。使用同样的方法求出其他类别的AP值,最后求出所有类别AP的均值,就得到了mAP。

注意:

在我们所有网络给出的结果都是经过非极大值抑制处理后所得到的目标边界框。


3. COCO评价指标

官网文档https://cocodataset.org/#detection-eval

相关推荐
编码小哥2 小时前
OpenCV Haar级联分类器:人脸检测入门
人工智能·计算机视觉·目标跟踪
程序员:钧念2 小时前
深度学习与强化学习的区别
人工智能·python·深度学习·算法·transformer·rag
数据与后端架构提升之路2 小时前
TeleTron 源码揭秘:如何用适配器模式“无缝魔改” Megatron-Core?
人工智能·python·适配器模式
Chef_Chen3 小时前
数据科学每日总结--Day44--机器学习
人工智能·机器学习
这张生成的图像能检测吗3 小时前
(论文速读)FR-IQA:面向广义图像质量评价:放松完美参考质量假设
人工智能·计算机视觉·图像增强·图像质量评估指标
KG_LLM图谱增强大模型4 小时前
本体论与知识图谱:揭示语义技术的核心差异
人工智能·知识图谱·本体论
JicasdC123asd4 小时前
黄瓜植株目标检测:YOLOv8结合Fasternet与BiFPN的高效改进方案
人工智能·yolo·目标检测
爱吃泡芙的小白白5 小时前
深入解析:2024年AI大模型核心算法与应用全景
人工智能·算法·大模型算法
小程故事多_805 小时前
攻克RAG系统最后一公里 图文混排PDF解析的挑战与实战方案
人工智能·架构·pdf·aigc
琅琊榜首20205 小时前
AI+编程双驱动:高质量短剧创作全流程指南
人工智能