目标检测中常见指标 - mAP

文章目录

    • [1. 评价指标](#1. 评价指标)
    • [2. 计算示例](#2. 计算示例)
    • [3. COCO评价指标](#3. COCO评价指标)

1. 评价指标

在目标检测领域,比较常用的两个公开数据集:pascal voccoco

目标检测与图像分类明显差距是很大的,在图像分类中,我们通常是统计在验证集当中,分类正确的个数除以验证集的总样本数就能得到准确率。

那么对于目标检测,怎么样才能算检测正确呢?

TP(True Positive):IoU>0.5的检测框数量(同一Ground Truth只计算一次)

FP(False Positive):IoU<=0.5的检测框(或者是检测到同一个GT到多余检测框的数量)

FN(False Negative):没有检测到的GT的数量

Precision: T P T P + F P \frac{TP}{TP+FP} TP+FPTP模型预测的所有目标中,预测正确的比例 - 查准率

Recall: T P T P + F N \frac{TP}{TP+FN} TP+FNTP所有真实目标中,模型预测正确的目标比例 - 查全率

AP:P-R曲线下面积

P-R曲线:Precision-Recall曲线

mAP:mean Average Precision,即各类别AP的平均值


2. 计算示例

当我们recall有重复值时,只用保留Precision值最大的信息。

以Recall为横坐标,以Precision为纵坐标,得到PR曲线。

阴影部分的免费则就说AP值,即
A P = 0.57 × 1.0 + ( 0.71 − 0.57 ) × 0.71 = 0.57 + 0.0994 = 0.6694 AP = 0.57\times 1.0 + (0.71-0.57)\times 0.71 = 0.57+0.0994 = 0.6694 AP=0.57×1.0+(0.71−0.57)×0.71=0.57+0.0994=0.6694

这里求的的AP为对应猫这个类别的AP值。使用同样的方法求出其他类别的AP值,最后求出所有类别AP的均值,就得到了mAP。

注意:

在我们所有网络给出的结果都是经过非极大值抑制处理后所得到的目标边界框。


3. COCO评价指标

官网文档https://cocodataset.org/#detection-eval

相关推荐
静心问道7 分钟前
TrOCR: 基于Transformer的光学字符识别方法,使用预训练模型
人工智能·深度学习·transformer·多模态
说私域9 分钟前
基于开源AI大模型、AI智能名片与S2B2C商城小程序源码的用户价值引导与核心用户沉淀策略研究
人工智能·开源
亲持红叶10 分钟前
GLU 变种:ReGLU 、 GEGLU 、 SwiGLU
人工智能·深度学习·神经网络·激活函数
说私域10 分钟前
线上协同办公时代:以开源AI大模型等工具培养网感,拥抱职业变革
人工智能·开源
群联云防护小杜12 分钟前
深度隐匿源IP:高防+群联AI云防护防绕过实战
运维·服务器·前端·网络·人工智能·网络协议·tcp/ip
摘星编程17 分钟前
构建智能客服Agent:从需求分析到生产部署
人工智能·需求分析·智能客服·agent开发·生产部署
不爱学习的YY酱20 分钟前
信息检索革命:Perplexica+cpolar打造你的专属智能搜索中枢
人工智能
whaosoft-1432 小时前
51c自动驾驶~合集7
人工智能
刘晓倩5 小时前
Coze智能体开发实战-多Agent综合实战
人工智能·coze
石迹耿千秋5 小时前
迁移学习--基于torchvision中VGG16模型的实战
人工智能·pytorch·机器学习·迁移学习