Variations-of-SFANet-for-Crowd-Counting代码复现

前文对Variations-of-SFANet-for-Crowd-Counting做了一点基础梳理,并对开源框架的可视化代码进行了验证,链接如下:

Variations-of-SFANet-for-Crowd-Counting记录-CSDN博客

Variations-of-SFANet-for-Crowd-Counting可视化代码-CSDN博客

这里对训练和测试代码进行相关复现。

train.py代码测试

(1)预训练权重

由于训练代码有预训练权重,来自:GitHub - ZhihengCV/Bayesian-Crowd-Counting: Official Implement of ICCV 2019 oral paper Bayesian Loss for Crowd Count Estimation with Point Supervision

根据文献Bayesian Loss for Crowd Count Estimation with Point Supervision:https://arxiv.org/abs/1908.03684所述

预训练是在ImageNet 上进行的

(2)训练模型

由于本文改进了SegNet和SFA两个模型,因此在训练的时候要选择不同的模型

regression_trainer.py中,注意选择不同的模型

<1>M_SFANet_UCF_QNRF

注意模型选择和路径的选择

UCF_QNRF数据集经过贝叶斯处理的流程同前文记录

预训练权重在前文链接中可以下载

处理好了就可以开始训练

训练报错记录

RuntimeError: Error(s) in loading state_dict for Model:

详细报错如下

python 复制代码
RuntimeError: Error(s) in loading state_dict for Model:
        Missing key(s) in state_dict: "vgg.conv1_1.conv.weight", "vgg.conv1_1.conv.bias", "vgg.conv1_2.conv.weight", "vgg.conv1_2.conv.bias", "vgg.conv2_1.conv.weight", "vgg.conv2_1.conv.bias", "vgg.conv2_2.conv.weight", "vgg.conv2_2.conv.bias", "vgg.conv3_1.conv.weight", "vgg.conv3_1.conv.bias", "vgg.conv3_2.conv.weight", "vgg.conv3_2.conv.bias", "vgg.conv3_3.conv.weight", "vgg.conv3_3.conv.bias", "vgg.conv3_4.conv.weight", "vgg.conv3_4.conv.bias", "vgg.conv4_1.conv.weight", "vgg.conv4_1.conv.bias", "vgg.conv4_2.conv.weight", "vgg.conv4_2.conv.bias", "vgg.conv4_3.conv.weight", "vgg.conv4_3.conv.bias", "vgg.conv4_4.conv.weight", "vgg.conv4_4.conv.bias", "vgg.conv5_1.conv.weight", "vgg.conv5_1.conv.bias", "vgg.conv5_2.conv.weight", "vgg.conv5_2.conv.bias", "vgg.conv5_3.conv.weight", "vgg.conv5_3.conv.bias", "vgg.conv5_4.conv.weight", "vgg.conv5_4.conv.bias", "spm.assp.aspp1.atrous_conv.weight", "spm.assp.aspp2.atrous_conv.weight", "spm.assp.aspp3.atrous_conv.weight", "spm.assp.aspp4.atrous_conv.weight", "spm.assp.global_avg_pool.1.weight", "spm.assp.conv1.weight", "spm.can.scales.0.1.weight", "spm.can.scales.1.1.weight", "spm.can.scales.2.1.weight", "spm.can.scales.3.1.weight", "spm.can.bottleneck.weight", "spm.can.bottleneck.bias", "spm.can.weight_net.weight", "spm.can.weight_net.bias", "spm.reg_layer.0.weight", "spm.reg_layer.0.bias", "spm.reg_layer.2.weight", "spm.reg_layer.2.bias", "dmp.conv1.conv.weight", "dmp.conv1.conv.bias", "dmp.conv2.conv.weight", "dmp.conv2.conv.bias", "dmp.conv3.conv.weight", "dmp.conv3.conv.bias", "dmp.conv4.conv.weight", "dmp.conv4.conv.bias", "dmp.conv5.conv.weight", "dmp.conv5.conv.bias", "dmp.conv6.conv.weight", "dmp.conv6.conv.bias", "dmp.conv7.conv.weight", "dmp.conv7.conv.bias", "conv_out.conv.weight", "conv_out.conv.bias".
        Unexpected key(s) in state_dict: "features.0.weight", "features.0.bias", "features.2.weight", "features.2.bias", "features.5.weight", "features.5.bias", "features.7.weight", "features.7.bias", "features.10.weight", "features.10.bias", "features.12.weight", "features.12.bias", "features.14.weight", "features.14.bias", "features.16.weight", "features.16.bias", "features.19.weight", "features.19.bias", "features.21.weight", "features.21.bias", "features.23.weight", "features.23.bias", "features.25.weight", "features.25.bias", "features.28.weight", "features.28.bias", "features.30.weight", "features.30.bias", "features.32.weight", "features.32.bias", "features.34.weight", "features.34.bias", "reg_layer.0.weight", "reg_layer.0.bias", "reg_layer.2.weight", "reg_layer.2.bias", "reg_layer.4.weight", "reg_layer.4.bias".

网上查的都不好使,这里注意预训练权重的文件里不要放多个权重文件,只放UCF_QNRF对应的预训练权重就好

这里用了5个epoch,训练集和测试集各用了5张图片数据来验证网络能否跑通,训练日志如下。不要在意指标大小。

<2>M_SFANet_UCF_QNRF

注意模型选择和路径的选择

输出日志

其他的效仿上述代码就好了

test.py代码测试

这里直接用仓库提供的权重进行测试,然后改改路径,同样用了5张图片数据测试

这里只用M_SFANet_UCF_QNRF测试,输出如下,其他同理,就不再赘述

相关推荐
美狐美颜sdk2 小时前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
DeepSeek-大模型系统教程2 小时前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
有Li2 小时前
通过具有一致性嵌入的大语言模型实现端到端乳腺癌放射治疗计划制定|文献速递-最新论文分享
论文阅读·深度学习·分类·医学生
郭庆汝2 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
小雷FansUnion4 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周4 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
叶子爱分享5 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜5 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿5 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程
张较瘦_6 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习