大型语言模型:聊天机器人如何突破对话的死板和预测性问题

在聊天机器人的领域,曾经存在着一个显著的问题。开发者需要从零开始构建聊天机器人,而他们手头的工具有限,只包括自然语言理解(NLU,包括意图和实体)、对话流程以及响应消息。

在传统聊天机器人中,唯一基于机器学习和人工智能模型的部分是NLU,它必须依赖一个模型来预测用户的意图和实体。

而对话流程和响应消息则是建立在一种固定且硬编码的逻辑之上,就像是一个固定状态的机器。用户的输入会根据这个状态机来引导,就好像是穿越对话流程的迷宫一样。

当聊天机器人的开发者开始工作时,他们需要从一个空白画布开始,从头开始开发NLU、对话流程和脚本(文本复制)。这也正是为什么有人认为聊天机器人的开发领域存在严重的不足。

幸运的是,已经有一些尝试来解决这个问题,以加速聊天机器人的开发过程。其中一个途径是利用协作工具和快速原型制作来加速开发。

此外,还有其他工具,例如面向特定行业或垂直领域的预构建聊天机器人框架,比如银行、IT支持、人力资源等。

还有更智能的开发工具,它们可以利用现有的客户对话来检测用户意图和对话分类,从而加速更准确的NLU开发。这些努力正在不断改变聊天机器人的发展方式。

然而,聊天机器人一直面临一个问题:它们的对话方式过于死板,对话流程和预设的回应信息都是固定的。

为了增加机器人回应的生动性,我们需要为每个节点设计了几种不同版本的回应信息,通过一些特殊标记来插入与具体对话相关的信息。

然而,聊天机器人的开发者们渴望有一种更灵活 、更智能的对话管理系统。

另外,我们迫切需要一种灵活的自然语言生成机制,其中回应信息不再单独存放在一个抽象层中,而是与对话直接相关联,动态生成对话。

在聊天机器人中,我们需要在输入时将无序的对话信息结构化,但在输出时以自由、非结构化的方式呈现,这一过程需要手动进行。

语言模型(LLMs)

随着语言模型(LLMs)的引入,所有这些要素,包括:

  • 数据处理
  • 自然语言的结构化和非结构化处理
  • 对话管理
  • 自然语言生成(NLG)
  • 自然语言理解(NLU)

都被整合到了一个模型中。现在的挑战不再是从一个空白的设计画布上构建聊天机器人,而是如何充分利用和控制LLMs,以创建可靠、可重复和负责任的对话应用程序。

在语言模型(LLM)市场中,我们看到了一些令人兴奋的趋势:

首先,针对不同用途的特定LLM,比如用于对话、翻译、编程等的模型,正逐渐式微,因为单一模型已经在几乎所有领域都展现出了强大的潜力。

LLM提供商也开始提供多个不同的模型供用户选择,这使得用户可以更灵活地根据他们的需求来选择合适的模型。

此外,LLM提供商将LLM用途划分为两类:一类是像ChatGPT、HuggingChat、Coral等个人助手,另一类是供开发者通过API使用的模型,这为不同用户提供了更多选择。

在技术方面,人们正在努力开发新的提示技术,以更精细地控制LLM的输出结果,这有助于提高对话的质量和准确性。

最后,为了更好地管理对话,人们采用了各种方法,包括提示链接、自主代理、提示管道等,还创建了LLM支持的聊天机器人开发框架,以在开发、构建和运行过程中更好地协助对话管理。这些发展都将推动LLM技术迈向更广泛的应用领域。

相关推荐
IT空门:门主2 分钟前
Spring AI的教程,持续更新......
java·人工智能·spring·spring ai
美狐美颜SDK开放平台10 分钟前
美颜sdk是什么?如何将美颜SDK接入安卓/iOS直播平台?
人工智能·美颜sdk·直播美颜sdk·美颜api·美狐美颜sdk
AI营销资讯站11 分钟前
AI营销内容生产:哪些平台支持全球多语言内容同步生产?
大数据·人工智能
飞哥数智坊12 分钟前
AutoGLM 开源实测:一句话让 AI 帮我点个鸡排
人工智能·chatglm (智谱)
云宏信息13 分钟前
运维效率提升实战:如何用轻量化云管平台统一纳管与自动化日常资源操作
运维·服务器·网络·架构·云计算
hour_go16 分钟前
微服务架构的故障演练数字化:方法解析与实践优势
微服务·云原生·架构
2022.11.7始学前端32 分钟前
n8n第九节 使用LangChain与Gemini构建带对话记忆的AI助手
java·人工智能·n8n
LYFlied1 小时前
在AI时代,前端开发者如何构建全栈开发视野与核心竞争力
前端·人工智能·后端·ai·全栈
天天进步20151 小时前
【Cradle 源码解析一】架构总览与通用计算机控制 (GCC) 的实现思路
架构
core5121 小时前
深度解析DeepSeek-R1中GRPO强化学习算法
人工智能·算法·机器学习·deepseek·grpo