Hadoop HDFS(分布式文件系统)

一、Hadoop HDFS(分布式文件系统)

为什么要分布式存储数据

假设一个文件有100tb,我们就把文件划分为多个部分,放入到多个服务器

靠数量取胜,多台服务器组合,才能Hold住

数据量太大,单机存储能力有上限,需要靠数量来解决问题

数量的提升带来的是网络传输,磁盘读写,CUP,内存等各方面的综合提升。分布式组合在一起可以达到

1+1>2的效果

二、大数据体系中,分布式的调度主要有2类架构模式:
1.去(无)中心化模式

去中心化模式,没有明确的中心,众多服务器之间基于特定规则进行同步协调

2.中心化模式

中心化模式

主从模式,大数据框架,大多数的基础架构上,都是符合:中心化模式的

即:有一个中心节点(服务器)来统筹其他服务器的工作,统一指挥,统一调派,避免混乱

这种模式,也被称之为:一主多从模式,简称主从模式 ( Master And Slaves )

主从模式(中心化模式)在现实生活中同样很常见:

公司企业管理,组织管理,行政管理

我们学习的Hadoop框架,就是一个典型的主从模式(中心化模式)架构的技术框架

三、HDFS Hadoop 三大组件 (HDFS MapReduce YARN) 之一

全程是: Hadoop Distributed File System Hadoop 分布文件系统)

Hadoop 技术栈内提供的分布式数据存储解决方案

可以在多台服务器上构建存储集群,存储海量的数据

HDFS就是一个典型的主从架构,拥有三个角色,以下就是HDFS的基础架构

1.NameNode:

HDFS系统的主角色,是一个独立的进程

负责管理HDFS整个文件系统

负责管理Datanode

2.Datanode:

HDFS系统的从角色,是一个独立进程

主要负责数据的存储,即存入数据和取出数据

3.SecondaryNameNode:

NameNode的辅助,是一个独立进程

主要帮忙NameNode完成源数据整理工作(打杂)

四、HDFS架构概述

1)NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、文件权限),以及每个文件的块列表和块所在的DataNode等。

2)DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。

3)Secondary NameNode(2nn):用来监控HDFS状态的辅助后台程序,每隔一段时间获取HDFS元数据的快照。

五、YARN架构概述

1)ResourceManager(rm):处理客户端请求、启动/监控ApplicationMaster、监控NodeManager、资源分配与调度;

2)NodeManager(nm):单个节点上的资源管理、处理来自ResourceManager的命令、处理来自ApplicationMaster的命令;

3)ApplicationMaster:数据切分、为应用程序申请资源,并分配给内部任务、任务监控与容错。

4)Container:对任务运行环境的抽象,封装了CPU、内存等多维资源以及环境变量、启动命令等任务运行相关

相关推荐
Eternity......5 分钟前
Spark,连接MySQL数据库,添加数据,读取数据
大数据·spark
智慧化智能化数字化方案29 分钟前
报告精读:华为2024年知行合一通信行业数据治理实践指南报告【附全文阅读】
大数据·数据治理实践指南报告·华为2024年知行合一·通信行业数据治理实践指南报告
caihuayuan430 分钟前
React Native 0.68 安装react-native-picker报错:找不到compile
java·大数据·sql·spring·课程设计
maozexijr43 分钟前
Flink 并行度的设置
大数据·flink
maozexijr1 小时前
Flink 数据传输机制
大数据·flink
MZWeiei1 小时前
Kafka 生产者工作流程详解
大数据·分布式·kafka
maozexijr2 小时前
Flink 的水印机制
大数据·flink
maozexijr2 小时前
什么是 Flink Pattern
大数据·python·flink
moongoblin3 小时前
协作赋能-1-制造业生产流程重构
大数据·人工智能·经验分享·制造
后端码匠3 小时前
【Hadoop】伪分布式安装
大数据·hadoop·分布式