| Year | Name | Area | model | description | drawback |
|---|---|---|---|---|---|
| 2021 ICML | Clip (Contrastive Language-Image Pre-training) | contrastive learning、zero-shot learing、mutimodel | ![]() |
用文本作为监督信号来训练可迁移的视觉模型 | CLIP's zero-shot performance, although comparable to supervised ResNet50, is not yet SOTA, and the authors estimate that to achieve SOTA, CLIP would need to add 1000x more computation, which is unimaginable;CLIP's zero-shot performs poorly on certain datasets, such as fine-grained classification, abstraction tasks, etc; CLIP performs robustly on natural distribution drift, but still suffers from out-of-domain generalisation, i.e., if the distribution of the test dataset differs significantly from the training set, CLIP will perform poorly; CLIP does not address the data inefficiency challenges of deep learning, and training CLIP requires a large amount of data; |
| 2021 ICLR | ViT (VisionTransformer) | ![]() |
将Transformer应用到vision中:simple, efficient,scalable | 当拥有足够多的数据进行预训练的时候,ViT的表现就会超过CNN,突破transformer缺少归纳偏置的限制,可以在下游任务中获得较好的迁移效果 | |
| 2022 | DALL-E | 基于文本来生成模型 | |||
| 2021 ICCV | Swin Transformer | ![]() |
使用滑窗和层级式的结构,解决transformer计算量大的问题;披着Transformer皮的CNN | ||
| 2021 | MAE(Masked Autoencoders) | self-supervised | ![]() |
CV版的bert | scalablel;very high-capacity models that generalize well |
| TransMed: Transformers Advance Multi-modal Medical Image Classification | ![]() |
||||
| I3D | |||||
| 2021 | Pathway | ||||
| 2021 ICML | VILT | 视觉文本多模态Transformer | 性能不高 推理时间快 训练时间特别慢 | ||
| 2021 NeurIPS | ALBEF | align before fusion 为了清理noisy data 提出用一个momentum model生成pseudo target |
CV论文阅读大合集
幸运的小菜鸟2023-11-02 22:12
相关推荐
m0_650108241 天前
PaLM-E:具身智能的多模态语言模型新范式m0_650108242 天前
PaLM:Pathways 驱动的大规模语言模型 scaling 实践小殊小殊2 天前
【论文笔记】视频RAG-Vgent:基于图结构的视频检索推理框架有点不太正常2 天前
《ShadowCoT: Cognitive Hijacking for Stealthy Reasoning Backdoors in LLMs》——论文阅读小殊小殊2 天前
【论文笔记】大型语言模型的知识蒸馏与数据集蒸馏SatoshiGogo3 天前
AIGC 论文笔记walnut_oyb4 天前
arXiv|SARLANG-1M:用于 SAR 图像理解的视觉-语言建模基准m0_650108244 天前
Gemini 2.5:重塑多模态 AI 边界的全面解读钟屿4 天前
Back to Basics: Let Denoising Generative Models Denoise 论文阅读学习张较瘦_4 天前
[论文阅读] AI + 数据库 | 拆解智能数据库:交互、管理、内核三层革新,AI 如何重塑数据处理



