CV论文阅读大合集

Year Name Area model description drawback
2021 ICML Clip (Contrastive Language-Image Pre-training) contrastive learning、zero-shot learing、mutimodel 用文本作为监督信号来训练可迁移的视觉模型 CLIP's zero-shot performance, although comparable to supervised ResNet50, is not yet SOTA, and the authors estimate that to achieve SOTA, CLIP would need to add 1000x more computation, which is unimaginable;CLIP's zero-shot performs poorly on certain datasets, such as fine-grained classification, abstraction tasks, etc; CLIP performs robustly on natural distribution drift, but still suffers from out-of-domain generalisation, i.e., if the distribution of the test dataset differs significantly from the training set, CLIP will perform poorly; CLIP does not address the data inefficiency challenges of deep learning, and training CLIP requires a large amount of data;
2021 ICLR ViT (VisionTransformer) 将Transformer应用到vision中:simple, efficient,scalable 当拥有足够多的数据进行预训练的时候,ViT的表现就会超过CNN,突破transformer缺少归纳偏置的限制,可以在下游任务中获得较好的迁移效果
2022 DALL-E 基于文本来生成模型
2021 ICCV Swin Transformer 使用滑窗和层级式的结构,解决transformer计算量大的问题;披着Transformer皮的CNN
2021 MAE(Masked Autoencoders) self-supervised CV版的bert scalablel;very high-capacity models that generalize well
TransMed: Transformers Advance Multi-modal Medical Image Classification
I3D
2021 Pathway
2021 ICML VILT 视觉文本多模态Transformer 性能不高 推理时间快 训练时间特别慢
2021 NeurIPS ALBEF align before fusion 为了清理noisy data 提出用一个momentum model生成pseudo target
相关推荐
张较瘦_1 小时前
[论文阅读] 人工智能 | 读懂Meta-Fair:让LLM摆脱偏见的自动化测试新方法
论文阅读·人工智能
李加号pluuuus14 小时前
【论文阅读】CogView: Mastering Text-to-Image Generation via Transformers
论文阅读
李加号pluuuus14 小时前
【论文阅读】CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer
论文阅读·深度学习·transformer
0x2111 天前
[论文阅读]Tensor Trust: Interpretable Prompt Injection Attacks from an Online Game
论文阅读·prompt
s1ckrain2 天前
【论文阅读】VARGPT-v1.1
论文阅读·多模态大模型·统一生成模型
Catching Star2 天前
【论文笔记】【强化微调】Vision-R1:首个针对多模态 LLM 制定的强化微调方法,以 7B 比肩 70B
论文阅读·强化微调
王上上2 天前
【论文阅读41】-LSTM-PINN预测人口
论文阅读·人工智能·lstm
s1ckrain3 天前
【论文阅读】DeepEyes: Incentivizing “Thinking with Images” via Reinforcement Learning
论文阅读·强化学习·多模态大模型·vlm
张较瘦_4 天前
[论文阅读] 人工智能 + 软件工程 | 需求获取访谈中LLM生成跟进问题研究:来龙去脉与创新突破
论文阅读·人工智能
北京地铁1号线4 天前
GPT-2论文阅读:Language Models are Unsupervised Multitask Learners
论文阅读·gpt·语言模型