CV论文阅读大合集

Year Name Area model description drawback
2021 ICML Clip (Contrastive Language-Image Pre-training) contrastive learning、zero-shot learing、mutimodel 用文本作为监督信号来训练可迁移的视觉模型 CLIP's zero-shot performance, although comparable to supervised ResNet50, is not yet SOTA, and the authors estimate that to achieve SOTA, CLIP would need to add 1000x more computation, which is unimaginable;CLIP's zero-shot performs poorly on certain datasets, such as fine-grained classification, abstraction tasks, etc; CLIP performs robustly on natural distribution drift, but still suffers from out-of-domain generalisation, i.e., if the distribution of the test dataset differs significantly from the training set, CLIP will perform poorly; CLIP does not address the data inefficiency challenges of deep learning, and training CLIP requires a large amount of data;
2021 ICLR ViT (VisionTransformer) 将Transformer应用到vision中:simple, efficient,scalable 当拥有足够多的数据进行预训练的时候,ViT的表现就会超过CNN,突破transformer缺少归纳偏置的限制,可以在下游任务中获得较好的迁移效果
2022 DALL-E 基于文本来生成模型
2021 ICCV Swin Transformer 使用滑窗和层级式的结构,解决transformer计算量大的问题;披着Transformer皮的CNN
2021 MAE(Masked Autoencoders) self-supervised CV版的bert scalablel;very high-capacity models that generalize well
TransMed: Transformers Advance Multi-modal Medical Image Classification
I3D
2021 Pathway
2021 ICML VILT 视觉文本多模态Transformer 性能不高 推理时间快 训练时间特别慢
2021 NeurIPS ALBEF align before fusion 为了清理noisy data 提出用一个momentum model生成pseudo target
相关推荐
m0_650108241 天前
PaLM-E:具身智能的多模态语言模型新范式
论文阅读·人工智能·机器人·具身智能·多模态大语言模型·palm-e·大模型驱动
m0_650108242 天前
PaLM:Pathways 驱动的大规模语言模型 scaling 实践
论文阅读·人工智能·palm·谷歌大模型·大规模语言模型·全面评估与行为分析·scaling效应
小殊小殊2 天前
【论文笔记】视频RAG-Vgent:基于图结构的视频检索推理框架
论文阅读·人工智能·深度学习
有点不太正常2 天前
《ShadowCoT: Cognitive Hijacking for Stealthy Reasoning Backdoors in LLMs》——论文阅读
论文阅读·大模型·agent安全
小殊小殊2 天前
【论文笔记】大型语言模型的知识蒸馏与数据集蒸馏
论文阅读·人工智能·深度学习
SatoshiGogo3 天前
AIGC 论文笔记
论文阅读·aigc
walnut_oyb4 天前
arXiv|SARLANG-1M:用于 SAR 图像理解的视觉-语言建模基准
论文阅读·人工智能·机器学习·计算机视觉·语言模型·自然语言处理
m0_650108244 天前
Gemini 2.5:重塑多模态 AI 边界的全面解读
论文阅读·人工智能·多模态大模型·gemini 2.5·跨模态融合
钟屿4 天前
Back to Basics: Let Denoising Generative Models Denoise 论文阅读学习
论文阅读·人工智能·笔记·学习·计算机视觉
张较瘦_4 天前
[论文阅读] AI + 数据库 | 拆解智能数据库:交互、管理、内核三层革新,AI 如何重塑数据处理
数据库·论文阅读·人工智能