| Year | Name | Area | model | description | drawback |
|---|---|---|---|---|---|
| 2021 ICML | Clip (Contrastive Language-Image Pre-training) | contrastive learning、zero-shot learing、mutimodel | ![]() |
用文本作为监督信号来训练可迁移的视觉模型 | CLIP's zero-shot performance, although comparable to supervised ResNet50, is not yet SOTA, and the authors estimate that to achieve SOTA, CLIP would need to add 1000x more computation, which is unimaginable;CLIP's zero-shot performs poorly on certain datasets, such as fine-grained classification, abstraction tasks, etc; CLIP performs robustly on natural distribution drift, but still suffers from out-of-domain generalisation, i.e., if the distribution of the test dataset differs significantly from the training set, CLIP will perform poorly; CLIP does not address the data inefficiency challenges of deep learning, and training CLIP requires a large amount of data; |
| 2021 ICLR | ViT (VisionTransformer) | ![]() |
将Transformer应用到vision中:simple, efficient,scalable | 当拥有足够多的数据进行预训练的时候,ViT的表现就会超过CNN,突破transformer缺少归纳偏置的限制,可以在下游任务中获得较好的迁移效果 | |
| 2022 | DALL-E | 基于文本来生成模型 | |||
| 2021 ICCV | Swin Transformer | ![]() |
使用滑窗和层级式的结构,解决transformer计算量大的问题;披着Transformer皮的CNN | ||
| 2021 | MAE(Masked Autoencoders) | self-supervised | ![]() |
CV版的bert | scalablel;very high-capacity models that generalize well |
| TransMed: Transformers Advance Multi-modal Medical Image Classification | ![]() |
||||
| I3D | |||||
| 2021 | Pathway | ||||
| 2021 ICML | VILT | 视觉文本多模态Transformer | 性能不高 推理时间快 训练时间特别慢 | ||
| 2021 NeurIPS | ALBEF | align before fusion 为了清理noisy data 提出用一个momentum model生成pseudo target |
CV论文阅读大合集
幸运的小菜鸟2023-11-02 22:12
相关推荐
xx_xxxxx_10 小时前
多模态动态融合模型Predictive Dynamic Fusion论文阅读与代码分析运行1-信度概念与基础参数指标数说星榆18119 小时前
好用的PC电脑流程图软件无需下载在线绘制流程图模板大全檐下翻书17320 小时前
PC端免费在线流程图工具新手快速制作专业流程图教程有Li1 天前
LoViT:用于手术阶段识别的长视频Transformer/文献速递-基于人工智能的医学影像技术程途拾光1581 天前
中文用户常用在线流程图工具PC端高效制作各类业务流程图方法DuHz2 天前
用于汽车应用的数字码调制(DCM)雷达白皮书精读@––––––2 天前
论文阅读笔记:The Bitter Lesson (苦涩的教训)张较瘦_2 天前
[论文阅读] AI + 软件工程 | 突破AAA游戏测试瓶颈!选择性插桩让代码覆盖“轻装上阵”STLearner2 天前
MM 2025 | 时间序列(Time Series)论文总结【预测,分类,异常检测,医疗时序】心心喵2 天前
[论文笔记] Agent is all you need | AI智能体前沿进展总结



