CV论文阅读大合集

Year Name Area model description drawback
2021 ICML Clip (Contrastive Language-Image Pre-training) contrastive learning、zero-shot learing、mutimodel 用文本作为监督信号来训练可迁移的视觉模型 CLIP's zero-shot performance, although comparable to supervised ResNet50, is not yet SOTA, and the authors estimate that to achieve SOTA, CLIP would need to add 1000x more computation, which is unimaginable;CLIP's zero-shot performs poorly on certain datasets, such as fine-grained classification, abstraction tasks, etc; CLIP performs robustly on natural distribution drift, but still suffers from out-of-domain generalisation, i.e., if the distribution of the test dataset differs significantly from the training set, CLIP will perform poorly; CLIP does not address the data inefficiency challenges of deep learning, and training CLIP requires a large amount of data;
2021 ICLR ViT (VisionTransformer) 将Transformer应用到vision中:simple, efficient,scalable 当拥有足够多的数据进行预训练的时候,ViT的表现就会超过CNN,突破transformer缺少归纳偏置的限制,可以在下游任务中获得较好的迁移效果
2022 DALL-E 基于文本来生成模型
2021 ICCV Swin Transformer 使用滑窗和层级式的结构,解决transformer计算量大的问题;披着Transformer皮的CNN
2021 MAE(Masked Autoencoders) self-supervised CV版的bert scalablel;very high-capacity models that generalize well
TransMed: Transformers Advance Multi-modal Medical Image Classification
I3D
2021 Pathway
2021 ICML VILT 视觉文本多模态Transformer 性能不高 推理时间快 训练时间特别慢
2021 NeurIPS ALBEF align before fusion 为了清理noisy data 提出用一个momentum model生成pseudo target
相关推荐
大拨鼠16 小时前
【多模态读论文系列】MINIGPT-4论文笔记
论文阅读
计算机-秋大田16 小时前
基于Spring Boot的船舶监造系统的设计与实现,LW+源码+讲解
java·论文阅读·spring boot·后端·vue
ssf-yasuo17 小时前
SPIRE: Semantic Prompt-Driven Image Restoration 论文阅读笔记
论文阅读·笔记·prompt
YMWM_18 小时前
论文阅读《Structure-from-Motion Revisited》
论文阅读
是瑶瑶子啦18 小时前
【深度学习】论文笔记:空间变换网络(Spatial Transformer Networks)
论文阅读·人工智能·深度学习·视觉检测·空间变换
咔叽布吉21 小时前
【论文阅读笔记】CamoFormer: Masked Separable Attention for Camouflaged Object Detection
论文阅读·笔记·目标检测
热情的Dongming2 天前
【课程总结】day34:多模态大模型之ViT模型、CLIP模型论文阅读理解
论文阅读
chencjiajy2 天前
向量模型Jina Embedding: 从v1到v3论文笔记
论文阅读·embedding·向量模型
HollowKnightZ2 天前
论文阅读笔记:DRCT: Saving Image Super-Resolution away from Information Bottleneck
论文阅读·笔记