Year | Name | Area | model | description | drawback |
---|---|---|---|---|---|
2021 ICML | Clip (Contrastive Language-Image Pre-training) | contrastive learning、zero-shot learing、mutimodel | ![]() |
用文本作为监督信号来训练可迁移的视觉模型 | CLIP's zero-shot performance, although comparable to supervised ResNet50, is not yet SOTA, and the authors estimate that to achieve SOTA, CLIP would need to add 1000x more computation, which is unimaginable;CLIP's zero-shot performs poorly on certain datasets, such as fine-grained classification, abstraction tasks, etc; CLIP performs robustly on natural distribution drift, but still suffers from out-of-domain generalisation, i.e., if the distribution of the test dataset differs significantly from the training set, CLIP will perform poorly; CLIP does not address the data inefficiency challenges of deep learning, and training CLIP requires a large amount of data; |
2021 ICLR | ViT (VisionTransformer) | ![]() |
将Transformer应用到vision中:simple, efficient,scalable | 当拥有足够多的数据进行预训练的时候,ViT的表现就会超过CNN,突破transformer缺少归纳偏置的限制,可以在下游任务中获得较好的迁移效果 | |
2022 | DALL-E | 基于文本来生成模型 | |||
2021 ICCV | Swin Transformer | ![]() |
使用滑窗和层级式的结构,解决transformer计算量大的问题;披着Transformer皮的CNN | ||
2021 | MAE(Masked Autoencoders) | self-supervised | ![]() |
CV版的bert | scalablel;very high-capacity models that generalize well |
TransMed: Transformers Advance Multi-modal Medical Image Classification | ![]() |
||||
I3D | |||||
2021 | Pathway | ||||
2021 ICML | VILT | 视觉文本多模态Transformer | 性能不高 推理时间快 训练时间特别慢 | ||
2021 NeurIPS | ALBEF | align before fusion 为了清理noisy data 提出用一个momentum model生成pseudo target |
CV论文阅读大合集
幸运的小菜鸟2023-11-02 22:12
相关推荐
张较瘦_1 小时前
[论文阅读] 人工智能 | 读懂Meta-Fair:让LLM摆脱偏见的自动化测试新方法李加号pluuuus14 小时前
【论文阅读】CogView: Mastering Text-to-Image Generation via Transformers李加号pluuuus14 小时前
【论文阅读】CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer0x2111 天前
[论文阅读]Tensor Trust: Interpretable Prompt Injection Attacks from an Online Games1ckrain2 天前
【论文阅读】VARGPT-v1.1Catching Star2 天前
【论文笔记】【强化微调】Vision-R1:首个针对多模态 LLM 制定的强化微调方法,以 7B 比肩 70B王上上2 天前
【论文阅读41】-LSTM-PINN预测人口s1ckrain3 天前
【论文阅读】DeepEyes: Incentivizing “Thinking with Images” via Reinforcement Learning张较瘦_4 天前
[论文阅读] 人工智能 + 软件工程 | 需求获取访谈中LLM生成跟进问题研究:来龙去脉与创新突破北京地铁1号线4 天前
GPT-2论文阅读:Language Models are Unsupervised Multitask Learners