深度学习02-数据集格式转换

背景:

通常搜集完数据图片后,我们会用labelimg进行图片标注,比较高版本的labelimg支持的标注格式有三种,PascalVOC、YOLO、CreateML,标注的时候可以根据自己的算法模型数据集需求选择相应的格式,当然,也可以三种方式同时标注,不过会耗时间一些。有时候我们仅仅标注了一种格式转,而实际算法建模的时候可能需要对相应的格式进行转换。

xml转json:

默认选用PascalVOC方式的话,标注的数据集格式为XML,实例如下(2.xml):

<annotation>
	<folder>Desktop</folder>
	<filename>ng2.png</filename>
	<path>C:\Users\Xiao\Desktop\ng2.png</path>
	<source>
		<database>Unknown</database>
	</source>
	<size>
		<width>1892</width>
		<height>851</height>
		<depth>3</depth>
	</size>
	<segmented>0</segmented>
	<object>
		<name>1</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>60</xmin>
			<ymin>381</ymin>
			<xmax>354</xmax>
			<ymax>583</ymax>
		</bndbox>
	</object>
</annotation>

将该文档转换为json格式并保存的代码如下:

import xml.etree.ElementTree as ET
import json

def xml_to_json(xml_file, json_file):
    tree = ET.parse(xml_file)
    root = tree.getroot()

    data = []
    for obj in root.findall('object'):
        obj_data = {}
        obj_data['name'] = obj.find('name').text
        obj_data['bbox'] = {
            'xmin': int(obj.find('bndbox/xmin').text),
            'ymin': int(obj.find('bndbox/ymin').text),
            'xmax': int(obj.find('bndbox/xmax').text),
            'ymax': int(obj.find('bndbox/ymax').text)
        }
        data.append(obj_data)

    json_data = {
        'filename': root.find('filename').text,
        'size': {
            'width': int(root.find('size/width').text),
            'height': int(root.find('size/height').text),
            'depth': int(root.find('size/depth').text)
        },
        'objects': data
    }

    with open(json_file, 'w') as f:
        json.dump(json_data, f, indent=4)

# Example usage
xml_file = r'C:\Users\Xiao\Desktop\tools\2.xml'
json_file = r'C:\Users\Xiao\Desktop\tools\2.json'
xml_to_json(xml_file, json_file)
print('数据转换完成!')

实际使用的时候需要适当修改一下文档路径才可以。

转换完之后的json内容如下(2.json):

{
    "filename": "ng2.png",
    "size": {
        "width": 1892,
        "height": 851,
        "depth": 3
    },
    "objects": [
        {
            "name": "1",
            "bbox": {
                "xmin": 60,
                "ymin": 381,
                "xmax": 354,
                "ymax": 583
            }
        }
    ]
}
相关推荐
牧歌悠悠1 小时前
【深度学习】Unet的基础介绍
人工智能·深度学习·u-net
坚毅不拔的柠檬柠檬2 小时前
AI革命下的多元生态:DeepSeek、ChatGPT、XAI、文心一言与通义千问的行业渗透与场景重构
人工智能·chatgpt·文心一言
坚毅不拔的柠檬柠檬2 小时前
2025:人工智能重构人类文明的新纪元
人工智能·重构
jixunwulian2 小时前
DeepSeek赋能AI边缘计算网关,开启智能新时代!
人工智能·边缘计算
Archie_IT2 小时前
DeepSeek R1/V3满血版——在线体验与API调用
人工智能·深度学习·ai·自然语言处理
大数据追光猿2 小时前
Python应用算法之贪心算法理解和实践
大数据·开发语言·人工智能·python·深度学习·算法·贪心算法
灵感素材坊3 小时前
解锁音乐创作新技能:AI音乐网站的正确使用方式
人工智能·经验分享·音视频
xinxiyinhe4 小时前
如何设置Cursor中.cursorrules文件
人工智能·python
AI服务老曹4 小时前
运用先进的智能算法和优化模型,进行科学合理调度的智慧园区开源了
运维·人工智能·安全·开源·音视频
alphaAIstack4 小时前
大语言模型推理能力从何而来?
人工智能·语言模型·自然语言处理