Matlab实现POA-CNN-SVM鹈鹕算法优化卷积神经网络-支持向量机多变量回归预测
目录
效果一览
基本介绍
1.POA-CNN-SVM鹈鹕算法优化卷积神经网络-支持向量机的多变量回归预测 可直接运行Matlab;
2.评价指标包括: R2、MAE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。要求2021版本及以上。
3.鹈鹕算法POA优化的参数为:CNN的批处理大小、学习率、正则化系数,能够避免人工选取参数的盲目性,有效提高其预测精度。
4.main.m为主程序,其他为函数文件,无需运行,data为数据,多输入单输出,数据回归预测,输入7个特征,输出1个变量,直接替换Excel数据即可用!注释清晰,适合新手小白~
程序设计
- 完整程序和数据获取方式:私信博主回复Matlab实现POA-CNN-SVM鹈鹕算法优化卷积神经网络-支持向量机多变量回归预测;
matlab
%%% Designed and Developed by Pavel Trojovský and Mohammad Dehghani %%%
function[Best_score,Best_pos,POA_curve]=POA(SearchAgents,Max_iterations,lowerbound,upperbound,dimension,fitness)
lowerbound=ones(1,dimension).*(lowerbound); % Lower limit for variables
upperbound=ones(1,dimension).*(upperbound); % Upper limit for variables
%% INITIALIZATION
for i=1:dimension
X(:,i) = lowerbound(i)+rand(SearchAgents,1).*(upperbound(i) - lowerbound(i)); % Initial population
end
for i =1:SearchAgents
L=X(i,:);
fit(i)=fitness(L);
end
%%
for t=1:Max_iterations
t
%% update the best condidate solution
[best , location]=min(fit);
if t==1
Xbest=X(location,:); % Optimal location
fbest=best; % The optimization objective function
elseif best<fbest
fbest=best;
Xbest=X(location,:);
end
%% UPDATE location of food
X_FOOD=[];
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229