机器学习之心一区级 | Matlab实现SMA-Transformer-LSTM多变量回归预测(黏菌算法优化)

机器学习之心一区级 | Matlab实现SMA-Transformer-LSTM多变量回归预测(黏菌算法优化)

目录

    • [机器学习之心一区级 | Matlab实现SMA-Transformer-LSTM多变量回归预测(黏菌算法优化)](#机器学习之心一区级 | Matlab实现SMA-Transformer-LSTM多变量回归预测(黏菌算法优化))

效果一览





基本介绍

1.【JCR一区级】Matlab实现SMA-Transformer-LSTM多变量回归预测,黏菌算法(SMA)优化Transformer-LSTM组合模型(程序可以作为JCR一区级论文代码支撑,目前尚未发表);

2.优化参数为:学习率,隐含层节点,正则化参数,运行环境为Matlab2023b及以上;

3.data为数据集,输入多个特征,输出单个变量,多变量回归预测,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价;

5.模型只是提供一个衡量数据集精度的方法,因此无法保证替换数据就一定得到您满意的结果。

程序设计

  • 完整程序和数据下载私信博主回复Matlab实现SMA-Transformer-LSTM多变量回归预测(黏菌算法优化)
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行



%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502

[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

相关推荐
小熊科研路(同名GZH)1 小时前
【Matlab高端绘图SCI绘图模板】第002期 绘制面积图
开发语言·matlab
好评笔记2 小时前
AIGC视频扩散模型新星:Video 版本的SD模型
论文阅读·深度学习·机器学习·计算机视觉·面试·aigc·transformer
机器学习之心2 小时前
GA-CNN-LSTM-Attention、CNN-LSTM-Attention、GA-CNN-LSTM、CNN-LSTM四模型多变量时序预测一键对比
人工智能·cnn·lstm·cnn-lstm·ga-cnn-lstm
肖田变强不变秃15 小时前
C++实现矩阵Matrix类 实现基本运算
开发语言·c++·matlab·矩阵·有限元·ansys
羊小猪~~21 小时前
深度学习基础--LSTM学习笔记(李沐《动手学习深度学习》)
人工智能·rnn·深度学习·学习·机器学习·gru·lstm
周杰伦_Jay1 天前
Ollama能本地部署Llama 3等大模型的原因解析(ollama核心架构、技术特性、实际应用)
数据结构·人工智能·深度学习·架构·transformer·llama
jk_1011 天前
MATLAB中characterListPattern函数用法
开发语言·matlab
好评笔记2 天前
AIGC视频生成模型:ByteDance的PixelDance模型
论文阅读·人工智能·深度学习·机器学习·计算机视觉·aigc·transformer
Seeklike2 天前
NLP 单双向RNN+LSTM+池化
rnn·自然语言处理·lstm
珊珊而川2 天前
BERT和Transformer模型有什么区别
人工智能·bert·transformer