python3 阿里云api进行巡检发送邮件

python3 脚本爬取阿里云进行巡检

太长时间了,pip安装依赖忘记那些了,使用科大星火询问了下,给了下面的,看看能不能使用吧

根据您提供的代码,您需要安装以下Python库:

  1. HTMLTable(来自HTMLTable库)
  2. email.mime.multipart(来自email库)
  3. paramiko
  4. clickhouse-driver(来自clickhouse_driver库)
  5. smtplib
  6. string
  7. json
  8. requests
  9. time
  10. datetime
  11. prettytable(来自prettytable库)
  12. ntpath(来自ntpath库)
  13. email.header(来自email库)
  14. aliyunsdkcore(来自aliyunsdkcore库)
  15. email.mime.text(来自email库)
  16. aliyunsdkcore.request(来自aliyunsdkcore库)
  17. aliyunsdkecs.request.v20140526(来自aliyunsdkecs库)
  18. aliyunsdkcore.acs_exception.exceptions(来自aliyunsdkcore库)
  19. aliyunsdkcms.request.v20190101(来自aliyunsdkcms库)
  20. aliyunsdkr_kvstore.request.v20150101(来自aliyunsdkr_kvstore库)
  21. aliyunsdkdts.request.v20200101(来自aliyunsdkdts库)
  22. aliyunsdkr_kvstore.request.v20150101(来自aliyunsdkr_kvstore库)

不确定pip能不能安装上,使用时候可以百度一下,脚本是可以使用的,没有问题的

powershell 复制代码
pip install HTMLTable
pip install email
pip install paramiko
pip install clickhouse-driver
pip install smtplib
pip install string
pip install json
pip install requests
pip install time
pip install datetime
pip install prettytable
pip install ntpath
pip install email.header
pip install aliyunsdkcore
pip install email.mime.text
pip install aliyunsdkcore.request
pip install aliyunsdkecs.request.v20140526
pip install aliyunsdkcore.acs_exception.exceptions
pip install aliyunsdkcms.request.v20190101
pip install aliyunsdkr_kvstore.request.v20150101
pip install aliyunsdkdts.request.v20200101
pip install aliyunsdkr_kvstore.request.v20150101
python 复制代码
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from HTMLTable import (HTMLTable,)
from email.mime.multipart import MIMEMultipart

import paramiko
from clickhouse_driver import Client, connect
import smtplib
import string
import json
import requests
import time
import datetime
import prettytable as pt
from ntpath import join
from email.header import Header
from aliyunsdkcore import client
from email.mime.text import MIMEText
from aliyunsdkcore.request import CommonRequest
from aliyunsdkecs.request.v20140526 import DescribeInstancesRequest
from aliyunsdkcore.acs_exception.exceptions import ClientException
from aliyunsdkcore.acs_exception.exceptions import ServerException
from aliyunsdkcms.request.v20190101.DescribeMetricTopRequest import DescribeMetricTopRequest
from aliyunsdkr_kvstore.request.v20150101.DescribeInstancesRequest import \
    DescribeInstancesRequest as DescribeInstancesRequest2
from aliyunsdkdts.request.v20200101.DescribeDtsJobsRequest import DescribeDtsJobsRequest
from aliyunsdkr_kvstore.request.v20150101.DescribeInstanceAttributeRequest import DescribeInstanceAttributeRequest

# 阿里云认证
clt = client.AcsClient('TT','BB', 'cn-chengdu')


# 脚本所需参数
# 设置页数
page_number = '1'
# 设置每页返回多少,默认为10条
strip_number = '100'
# ECS到期时间范围单位是'天'
expire_days = '7'
# 云服务的数据命名空间(磁盘使用率那进行调用)
ecs_namespace = 'acs_ecs_dashboard'
# 云服务(ECS)的监控项名称
Disk_metricname = 'vm.DiskUtilization'  # 磁盘
Mem_metricname = 'vm.MemoryUtilization'  # 内存
CPU_metricname = 'cpu_total'  # CPU
# 磁盘使用率阀值(%)
Disk_use_rate = '70'
# 内存使用率阀值(%)
Mem_user_rate = '70'
# CPU使用率阀值(%)
Cpu_user_rate = '70'
str_time = "%s-%s-%s" % (datetime.datetime.now().year,
                         datetime.datetime.now().month, datetime.datetime.now().day)
time_mail = time.strftime('%Y%m%d%H%M%S ', time.localtime(time.time()))
# 发送邮件相关信息
sender = 'aaaaaaa@163.com'

# 收件人邮箱
receiver = 'bbbbb@163.com','ccccc@163.com'
# receiver = 'wangzq@icbf.com.cn','yangyang@icbf.com.cn'

subject = '%s运维巡检表' % (str_time)
# 邮箱账户命密码
username = 'aaaaaaa@163.com'
password = 'aaaaaaaa'

'''
阿里云采样范围太大就会提示(是因为每个月阿里云api是有固定免费额度的)
{"status":"error","errorType":"execution",
"error":"query processing would load too many samples into memory in query execution"}
'''

# 生成表格
def form(column_name, field_information, title):
    table = HTMLTable(caption='')
    table.append_header_rows(((column_name),))
    for field in field_information:
        table.append_data_rows(((field),))
    # 表格样式,即<table>标签样式
    table.set_style({
        'border-collapse': 'collapse',
        'word-break': 'keep-all',
        'white-space': 'nowrap',
        'font-size': '14px',
        'margin-left': '30px',
        'text-align': 'center',
    })
    # 统一设置所有单元格样式,<td>或<th>
    table.set_cell_style({
        'border-color': '#000',
        'border-width': '1px',
        'border-style': 'solid',
        'padding': '5px',
    })
    # 表头样式
    table.set_header_row_style({
        'color': '#fff',
        'background-color': '#48a6fb',
        'font-size': '18px',
    })

    # 覆盖表头单元格字体样式
    table.set_header_cell_style({
        'padding': '15px',
    })
    html = table.to_html()
    html = '<h3 style="color:red;margin-left: 30px" > %s </h3>' % (
        title) + html
    return html

# 把巡检信息进行html格式化
def html_formatting( Aliyun_html):
    html_text = """
<!DOCTYPE html>
<html lang="en">
<head>
    <title></title>
    <meta charset="utf-8">
</head>
<body>
    <div class="page" style="margin-left: 20px">
        <h1> {time_mail} 巡检结果如下 </h1>
        <h2 style="color:blue;margin-left: 15px"> 阿里云 </h2>
        {Aliyun_html}
        </div>
    </div>
</body>
</html>
""".format(
        time_mail=str_time,
        Aliyun_html=Aliyun_html,
    )
    msge = html_text
    return msge



# 列表---ECS列表
def get_sys_info():
    request = DescribeInstancesRequest.DescribeInstancesRequest()
    # request.set_PageNumber('page_number')   #设置页数
    request.set_PageSize(strip_number)  # 设置每页返回多少,默认为10条
    request.set_accept_format('json')
    response = json.loads(clt.do_action(request)).get(
        'Instances').get('Instance')
    return response

# ECS 5天内到期时间
def ecs_five_endtime():
    field_information = []
    count = 0
    for i in get_sys_info():
        # 阿里云UTC时间转换成北京时间
        ecs_endtime_0 = i['ExpiredTime']
        ecs_endtime_1 = "%Y-%m-%dT%H:%MZ"
        ecs_endtime_2 = datetime.datetime.strptime(
            ecs_endtime_0, ecs_endtime_1)
        ecs_endtime_3 = ecs_endtime_2 + \
            datetime.timedelta(hours=8) - datetime.timedelta(seconds=1)
        ecs_endtime_4 = ecs_endtime_3.strftime('%Y-%m-%d')
        # 计算到期时间与现在时间之差
        current_time = time.strftime("%Y-%m-%d", time.localtime())
        current = time.mktime(time.strptime(current_time, '%Y-%m-%d'))
        ecs_endtime_5 = time.mktime(time.strptime(ecs_endtime_4, '%Y-%m-%d'))
        count_days = int((ecs_endtime_5 - current) / (24 * 60 * 60))

        # 距离到期时间小于天数
        if count_days <= int(expire_days):
            count = count + 1
            ecs_remarks = i['InstanceId'], i['InstanceName']
            ecs_IP_0 = i['VpcAttributes']
            ecs_IP_1 = ecs_IP_0["PrivateIpAddress"]["IpAddress"][0]
            field = count, list(ecs_remarks)[0], ecs_IP_1, ecs_endtime_3.strftime(
                '%Y年%m月%d日 %H:%M'), list(ecs_remarks)[1]
        #    print(field)
            field_information.append(field)

    title = 'ECS到期时间(%s天内)' % (expire_days)
    column_name = ["序号", "实例ID", "IP地址", "到期时间", "备注"]
    html_table = form(column_name=column_name, title=title,
                      field_information=field_information)
    return html_table

# ECS磁盘使用率
def disk_info():
    request = DescribeMetricTopRequest()
    request.set_accept_format('json')
    request.set_Namespace(ecs_namespace)
    request.set_MetricName(Disk_metricname)
    request.set_Orderby("Average")
    request.set_Length(strip_number)
    response_0 = clt.do_action_with_exception(request)
    response_1 = str(response_0, encoding='utf-8')
    return response_1

# 列出超出磁盘阈值的ECS信息
def get_disk_Value():
    field_information = []
    count = 0
    Slicing_0 = eval(str(disk_info()))
    Slicing_1 = Slicing_0["Datapoints"]
    Slicing_2 = eval(Slicing_1)
    for Slicing_3 in Slicing_2:
        if Slicing_3.get("Average") >= float(Disk_use_rate):
            for ecs_id_0 in get_sys_info():
                if Slicing_3.get("instanceId") == ecs_id_0['InstanceId']:
                    count += 1
                    ecs_remarks = ecs_id_0['InstanceId'], ecs_id_0['InstanceName']
                    ecs_IP_0 = ecs_id_0['VpcAttributes']
                    ecs_IP_1 = ecs_IP_0["PrivateIpAddress"]["IpAddress"][0]
                    field = count, Slicing_3.get("instanceId"), ecs_IP_1, Slicing_3.get(
                        "mountpoint"), Slicing_3.get("Maximum"), list(ecs_remarks)[1]
                    field_information.append(field)

    title = 'ECS磁盘使用率大于%s' % (Disk_use_rate)
    column_name = ["序号", "实例ID", "IP地址", "目录", "使用率(%)", "备注"]
    html_table = form(column_name=column_name, title=title,
                      field_information=field_information)
    return html_table

# ECS-CPU使用率
def CPU_info():
    request = DescribeMetricTopRequest()
    request.set_accept_format('json')
    request.set_Namespace(ecs_namespace)
    request.set_MetricName(CPU_metricname)
    request.set_Orderby("Average")
    request.set_Length(strip_number)
    response_0 = clt.do_action_with_exception(request)
    response_1 = str(response_0, encoding='utf-8')
    return response_1

# 列出超出CPU阈值的ECS信息
def get_CPU_Value():
    count = 0
    field_information = []
    Slicing_0 = eval(str(CPU_info()))
    Slicing_1 = Slicing_0["Datapoints"]
    Slicing_2 = eval(Slicing_1)
    for Slicing_3 in Slicing_2:
        if Slicing_3.get("Average") >= float(Cpu_user_rate):
            for ecs_id_0 in get_sys_info():
                if Slicing_3.get("instanceId") == ecs_id_0['InstanceId']:
                    ecs_remarks = ecs_id_0['InstanceId'], ecs_id_0['InstanceName']
                    ecs_IP_0 = ecs_id_0['VpcAttributes']
                    ecs_IP_1 = ecs_IP_0["PrivateIpAddress"]["IpAddress"][0]
                    count += 1
            field = count, Slicing_3.get("instanceId"), ecs_IP_1, Slicing_3.get(
                "Maximum"), list(ecs_remarks)[1]
            field_information.append(field)

    title = 'ECS-CPU使用率大于%s' % (Cpu_user_rate)
    column_name = ["序号", "实例ID", "IP地址", "使用率(%)", "备注"]
    html_table = form(column_name=column_name, title=title,
                      field_information=field_information)
    return html_table

# ECS内存使用率
def Member_info():
    request = DescribeMetricTopRequest()
    request.set_accept_format('json')
    request.set_Namespace(ecs_namespace)
    request.set_MetricName(Mem_metricname)
    request.set_Orderby("Average")
    request.set_Length(strip_number)
    response_0 = clt.do_action_with_exception(request)
    response_1 = str(response_0, encoding='utf-8')
    return response_1

# 列出超出内存阈值的ECS信息
def get_Member_Value():
    count = 0
    field_information = []
    Slicing_0 = eval(str(Member_info()))
    Slicing_1 = Slicing_0["Datapoints"]
    Slicing_2 = eval(Slicing_1)
    for Slicing_3 in Slicing_2:
        if Slicing_3.get("Average") >= float(Mem_user_rate):
            for ecs_id_0 in get_sys_info():
                if Slicing_3.get("instanceId") == ecs_id_0['InstanceId']:
                    ecs_remarks = ecs_id_0['InstanceId'], ecs_id_0['InstanceName']
                    ecs_IP_0 = ecs_id_0['VpcAttributes']
                    ecs_IP_1 = ecs_IP_0["PrivateIpAddress"]["IpAddress"][0]
                    count += 1
            field = count, Slicing_3.get("instanceId"), ecs_IP_1, Slicing_3.get(
                "Maximum"), list(ecs_remarks)[1]
            field_information.append(field)

    title = 'ECS内存使用率大于%s' % (Mem_user_rate)
    column_name = ["序号", "实例ID", "IP地址", "使用率(%)", "备注"]
    html_table = form(column_name=column_name, title=title,
                      field_information=field_information)
    return html_table

# 列表---RDS实例列表
def get_rds_info():
    request = CommonRequest()
    request.set_accept_format('json')
    request.set_domain('rds.aliyuncs.com')
    request.set_method('POST')
    request.set_protocol_type('https')  # https | http
    request.set_version('2014-08-15')
    request.set_action_name('DescribeDBInstances')
    request.add_query_param('RegionId', "cn-beijing")
    request.add_query_param('PageSize', strip_number)  # 条数
    # request.add_query_param('PageNumber', page_number) ###页码
    response = clt.do_action(request)
    false = 0
    rds_list_0 = eval(str(response, encoding='utf-8'))
    rds_list_1 = rds_list_0["Items"]["DBInstance"]
    return rds_list_1

# 列出RDS到期时间
def rds_endtime():
    field_information = []
    count = 0
    for i in get_rds_info():
        # 阿里云UTC时间转换成北京时间
        rds_endtime_0 = i['ExpireTime']
        rds_endtime_1 = "%Y-%m-%dT%H:%M:%SZ"
        rds_endtime_2 = datetime.datetime.strptime(
            rds_endtime_0, rds_endtime_1)
        rds_endtime_3 = rds_endtime_2 + \
            datetime.timedelta(hours=8) - datetime.timedelta(seconds=1)
        rds_endtime_4 = rds_endtime_3.strftime('%Y-%m-%d')
        # 计算到期时间与现在时间之差
        current_time = time.strftime("%Y-%m-%d", time.localtime())
        current = time.mktime(time.strptime(current_time, '%Y-%m-%d'))
        rds_endtime_5 = time.mktime(time.strptime(rds_endtime_4, '%Y-%m-%d'))
        count_days = int((rds_endtime_5 - current) / (24 * 60 * 60))

        # 距离到期时间小于天数
        if count_days <= int(expire_days):
            count = count + 1
            field = count, i["DBInstanceId"], rds_endtime_3.strftime(
                '%Y年%m月%d日 %H:%M'), i["DBInstanceDescription"]
            field_information.append(field)

    title = 'RDS到期时间(%s天内)' % (expire_days)
    column_name = ["序号", "实例ID", "到期时间", "备注"]
    html_table = form(column_name=column_name, title=title,
                      field_information=field_information)
    return html_table

# 列出RDS磁盘使用率
def rds_disk_info():
    request = DescribeMetricTopRequest()
    request.set_accept_format('json')
    request.set_MetricName("DiskUsage")
    request.set_Namespace("acs_rds_dashboard")
    request.set_Orderby("Average")
    request.set_Length(strip_number)
    response_0 = clt.do_action_with_exception(request)
    response_1 = str(response_0, encoding='utf-8')
    return response_1

# 列出RDS超出阀值的资源
def rds_disk_threshold():
    count = 0
    field_information = []

    rds_threshold_0 = eval(rds_disk_info())
    rds_threshold_1 = eval(rds_threshold_0["Datapoints"])
    for rds_threshold_3 in rds_threshold_1:
        if rds_threshold_3["Average"] >= float(Disk_use_rate):
            for rds_id_0 in get_rds_info():
                if rds_id_0["DBInstanceId"] == 'rm-2ze3bzdt0ej4za0t6':
                    break
                if rds_threshold_3["instanceId"] == rds_id_0["DBInstanceId"]:
                    count += 1
                    field = count, rds_threshold_3["instanceId"], rds_id_0[
                        "DBInstanceDescription"], rds_threshold_3["Average"]
                    field_information.append(field)

    title = 'RDS-磁盘使用率大于70%'
    column_name = ["序号", "实例ID", "备注", "使用率(%)"]
    html_table = form(column_name=column_name, title=title,
                      field_information=field_information)
    return html_table

# 列出redis实例列表
def get_redis_info():
    request = DescribeInstancesRequest2()
    request.set_accept_format('json')
    request.set_PageNumber(page_number)  # 页码
    request.set_PageSize(strip_number)  # 条数
    response_0 = clt.do_action_with_exception(request)
    false = true = 0
    response_1 = eval(str(response_0, encoding='utf-8'))
    response_2 = response_1["Instances"]["KVStoreInstance"]
    return response_2

# Redis到期时间
def redis_endtime():
    field_information = []
    count = 0
  
    for i in get_redis_info():
        # 阿里云UTC时间转换成北京时间
        # if i.get('UserName') == 'r-2vcik2bo8gzn07yri9':
        redis_endtime_0 = i['EndTime']
        redis_endtime_1 = "%Y-%m-%dT%H:%M:%SZ"
        redis_endtime_2 = datetime.datetime.strptime(
            redis_endtime_0, redis_endtime_1)
        redis_endtime_3 = redis_endtime_2 + datetime.timedelta(hours=8)
        redis_endtime_4 = redis_endtime_3.strftime('%Y-%m-%d')
        # 计算到期时间与现在时间之差
        current_time = time.strftime("%Y-%m-%d", time.localtime())
        current = time.mktime(time.strptime(current_time, '%Y-%m-%d'))
        redis_endtime_5 = time.mktime(
            time.strptime(redis_endtime_4, '%Y-%m-%d'))
        count_days = int((redis_endtime_5 - current) / (24 * 60 * 60))

        # 距离到期时间小于天数
        if count_days <= int(expire_days):
            count = count + 1
            field = [count, i["InstanceId"], redis_endtime_3.strftime(
                '%Y年%m月%d日 %H:%M'), i["InstanceName"]]
            field_information.append(field)

    title = 'Redis到期时间(%s天内)' %(expire_days)
    column_name = ["序号", "实例ID", "到期时间", "备注"]
    html_table = form(column_name=column_name, title=title,
                      field_information=field_information)
    return html_table

# 邮件
def send_mail(email_html):
    msg = MIMEMultipart()
    msg['Subject'] = Header(subject, 'utf-8')
    msg['From'] = Header('patrol-alarm@icbf.com.cn', 'utf-8')  # 发送者
    msg['To'] = Header('运维组', 'utf-8')
    msg.attach(MIMEText(email_html, 'html', 'utf-8'))
    smtp = smtplib.SMTP()
    smtp.connect('smtp.qiye.aliyun.com')
    smtp.login(username, password)
    for mailuser in receiver:
        smtp.sendmail(sender, mailuser, msg.as_string())
    print("邮件发送成功")
    smtp.quit()

# 执行
if __name__ == '__main__':
    # 到期时间 ETC_endtime() + redis_endtime() + rds_endtime() + ecs_five_endtime()
    # 磁盘阀值类: rds_disk_threshold() + get_disk_Value()
    # CPU&内存类:get_CPU_Value() + get_Member_Value()
    # print(redis_endtime())
    html = html_formatting(
        Aliyun_html=get_disk_Value() +
        rds_disk_threshold() +
        rds_endtime() +
        ecs_five_endtime() +
        get_CPU_Value() +
        get_Member_Value() +
        redis_endtime()
    )
    send_mail(email_html=html)

效果展示

相关推荐
努力的小T37 分钟前
基于 Bash 脚本的系统信息定时收集方案
linux·运维·服务器·网络·云计算·bash
加德霍克1 小时前
【机器学习】使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测
人工智能·python·学习·机器学习·作业
matlabgoodboy1 小时前
代码编写java代做matlab程序代编Python接单c++代写web系统设计
java·python·matlab
l1x1n01 小时前
No.37 笔记 | Python面向对象编程学习笔记:探索代码世界的奇妙之旅
笔记·python·学习
wanfeng_091 小时前
视频m3u8形式播放 -- python and html
python·html·video·hls·m3u8
阿俊仔(摸鱼版)2 小时前
Python 常用运维模块之OS模块篇
运维·开发语言·python·云服务器
lly_csdn1232 小时前
【Image Captioning】DynRefer
python·深度学习·ai·图像分类·多模态·字幕生成·属性识别
西猫雷婶3 小时前
python学opencv|读取图像(四十一 )使用cv2.add()函数实现各个像素点BGR叠加
开发语言·python·opencv
金融OG3 小时前
99.11 金融难点通俗解释:净资产收益率(ROE)VS投资资本回报率(ROIC)VS总资产收益率(ROA)
大数据·python·算法·机器学习·金融
Linux运维老纪3 小时前
分布式存储的技术选型之HDFS、Ceph、MinIO对比
大数据·分布式·ceph·hdfs·云原生·云计算·运维开发