基于YOLOv8的烟雾检测:自研模块 BSAM注意力 PK CBAM注意力,提升一个多点

💡💡💡本文全网首发独家改进:提出新颖的注意力BSAM(BiLevel Spatial Attention Module),创新度极佳,适合科研创新,效果秒杀CBAM, Channel Attention+Spartial Attention升级为新颖的 BiLevel Attention+Spartial Attention

1)作为注意力BSAM使用;

推荐指数:五星

BSAM VS CBAM | 野外烟雾检测 mAP50 0.968 VS****0.953

1.YOLOv8介绍

Ultralytics YOLOv8是Ultralytics公司开发的YOLO目标检测和图像分割模型的最新版本。YOLOv8是一种尖端的、最先进的(SOTA)模型,它建立在先前YOLO成功基础上,并引入了新功能和改进,以进一步提升性能和灵活性。它可以在大型数据集上进行训练,并且能够在各种硬件平台上运行,从CPU到GPU。

具体改进如下:

  1. Backbone:使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;

  2. PAN-FPN:毫无疑问YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时也将C3模块替换为了C2f模块;

  3. Decoupled-Head:是不是嗅到了不一样的味道?是的,YOLOv8走向了Decoupled-Head;

  4. Anchor-Free :YOLOv8抛弃了以往的Anchor-Base,使用了Anchor-Free的思想;

  5. 损失函数:YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失;

  6. 样本匹配:YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式

框架图提供见链接:Brief summary of YOLOv8 model structure · Issue #189 · ultralytics/ultralytics · GitHub

2.野外火灾烟雾数据集介绍

数据集大小737张,train:val:test 随机分配为7:2:1,类别:smoke

3.BSAM介绍

Channel Attention+Spartial Attention升级为新颖的 BiLevel Attention+Spartial Attention

详见:YOLOv8独家原创改进:自研独家创新BSAM注意力 ,基于CBAM升级-CSDN博客

3.1.CBAM:通道注意力和空间注意力的集成者

轻量级的卷积注意力模块,它结合了通道和空间的注意力机制模块

论文题目:《CBAM: Convolutional Block Attention Module》
论文地址: https://arxiv.org/pdf/1807.06521.pdf

上图可以看到,CBAM包含CAM(Channel Attention Module)和SAM(Spartial Attention Module)两个子模块,分别进行通道和空间上的Attention。这样不只能够节约参数和计算力,并且保证了其能够做为即插即用的模块集成到现有的网络架构中去。

4.实验结果对比

CBAM

BSAM

相关推荐
Percent_bigdata22 分钟前
百分点科技发布中国首个AI原生GEO产品Generforce,助力品牌决胜AI搜索新时代
人工智能·科技·ai-native
Gloria_niki24 分钟前
YOLOv4 学习总结
人工智能·计算机视觉·目标跟踪
小白学大数据27 分钟前
实战:Python爬虫如何模拟登录与维持会话状态
开发语言·爬虫·python
一念&29 分钟前
每日一个C语言知识:C 结构体
c语言·开发语言
FriendshipT31 分钟前
目标检测:使用自己的数据集微调DEIMv2进行物体检测
人工智能·pytorch·python·目标检测·计算机视觉
海森大数据34 分钟前
三步破局:一致性轨迹强化学习开启扩散语言模型“又快又好”推理新时代
人工智能·语言模型·自然语言处理
Tencent_TCB36 分钟前
云开发CloudBase AI+实战:快速搭建AI小程序全流程指南
人工智能·ai·小程序·ai编程·云开发
Sunhen_Qiletian38 分钟前
基于OpenCV与Python的身份证号码识别案例详解
人工智能·opencv·计算机视觉
AustinCyy44 分钟前
【论文笔记】Introduction to Explainable AI
论文阅读·人工智能
岁月宁静1 小时前
在富文本编辑器中封装实用的 AI 写作助手功能
前端·vue.js·人工智能