多模态论文阅读之BLIP

BLIP泛读

Title

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Motivation

  1. 模型角度:clip albef等要么采用encoder-base model 要么采用encoder-decoder model. However, encoder-based models are less straightforward to directly transfer to text generation tasks(e.g. image captioning), whereas encoder-decoder models have not been sucessfully adopted for image-text retrieval tasks. 那有没有一个统一的框架呢?
  2. 数据角度:SOTA的方法(如CLIP、ALBEF等)都在从web上收集到的图文对上进行预训练。尽管通过扩展数据集获得了性能提升,但本文的研究表明,对于视觉语言学习来说,有噪声的网络文本是次优(suboptimal)的。

Contribution

  1. Bootstrapping: 从网页上获得了嘈杂的数据集训练一个模型,再通过一些方法获得一个更干净的数据集,能不能训练处一个更好的模型。
  2. Unified:caption filter

Model

相关推荐
张较瘦_9 小时前
[论文阅读] AI+ | GenAI重塑智慧图书馆:华东师大实践AI虚拟馆员,解放馆员聚焦高价值任务
论文阅读·人工智能
CoookeCola1 天前
MovieNet (paper) :推动电影理解研究的综合数据集与基准
数据库·论文阅读·人工智能·计算机视觉·视觉检测·database
张较瘦_2 天前
[论文阅读] AI+ | AI如何重塑审计行业?从“手工筛查”到“智能决策”:AI审计的核心逻辑与未来路径
论文阅读·人工智能
苦瓜汤补钙3 天前
论文阅读——Segment Anything(Meta AI)——SAM
论文阅读·图像处理·人工智能·nlp·ai编程
CV-杨帆3 天前
论文阅读:arxiv 2025 Safety in Large Reasoning Models: A Survey
论文阅读
张较瘦_3 天前
[论文阅读] AI | 大语言模型服务系统服务级目标和系统级指标优化研究
论文阅读·人工智能·语言模型
Vizio<4 天前
《基于电阻层析成像(ERT)的机器人皮肤空间灵敏度均衡:通过应变系数分布优化》ICRA 2025 论文解读
论文阅读·机器人·机器人触觉
三木今天学习了嘛4 天前
【VLA & Markov】VLA 架构和构建模块 与 Markov 带来的时序思考
论文阅读
依夏c4 天前
[论文笔记•(多智能体)]LLMs Can Simulate Standardized Patients via Agent Coevolution
论文阅读·论文笔记
wzx_Eleven4 天前
【论文阅读】AAAI 2025 | 面向精确分割式联邦学习的多模型聚合与知识重放
论文阅读·人工智能·机器学习