多模态论文阅读之BLIP

BLIP泛读

Title

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Motivation

  1. 模型角度:clip albef等要么采用encoder-base model 要么采用encoder-decoder model. However, encoder-based models are less straightforward to directly transfer to text generation tasks(e.g. image captioning), whereas encoder-decoder models have not been sucessfully adopted for image-text retrieval tasks. 那有没有一个统一的框架呢?
  2. 数据角度:SOTA的方法(如CLIP、ALBEF等)都在从web上收集到的图文对上进行预训练。尽管通过扩展数据集获得了性能提升,但本文的研究表明,对于视觉语言学习来说,有噪声的网络文本是次优(suboptimal)的。

Contribution

  1. Bootstrapping: 从网页上获得了嘈杂的数据集训练一个模型,再通过一些方法获得一个更干净的数据集,能不能训练处一个更好的模型。
  2. Unified:caption filter

Model

相关推荐
蓝田生玉1236 小时前
LLaMA论文阅读笔记
论文阅读·笔记·llama
*西瓜7 小时前
基于深度学习的视觉水位识别技术与装备
论文阅读·深度学习
大模型最新论文速读8 小时前
BAR-RAG: 通过边界感知训练让单轮 RAG 效果媲美深度研究
论文阅读·人工智能·深度学习·机器学习·自然语言处理
觉醒大王1 天前
科研新手如何读文献?从“乱读”到“会读”
论文阅读·笔记·深度学习·学习·自然语言处理·学习方法
有Li1 天前
SafeRPlan: 用于椎弓根螺钉置入术中规划的安全深度强化学习/文献速递-基于人工智能的医学影像技术
论文阅读·人工智能·深度学习·文献·医学生
小明_GLC1 天前
Is Mamba Effective for Time Series Forecasting?论文阅读
论文阅读
蓝海星梦1 天前
GRPO 算法演进——偏差修正/鲁棒优化/架构扩展篇
论文阅读·人工智能·深度学习·算法·自然语言处理·强化学习
xx_xxxxx_1 天前
多模态动态融合模型Predictive Dynamic Fusion论文阅读与代码分析2-对比模型与底层模型的基本结构
论文阅读·多模态
YMWM_1 天前
《ImageNet Classification with Deep Convolutional Neural Networks》论文阅读
论文阅读
蓝海星梦1 天前
GRPO 算法演进——裁剪机制篇
论文阅读·人工智能·深度学习·算法·自然语言处理·强化学习