Pytorch从零开始实战08

Pytorch从零开始实战------YOLOv5-C3模块实现

本系列来源于365天深度学习训练营

原作者K同学

文章目录

环境准备

本文基于Jupyter notebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论基础。本次实验的目的理解YOLOv5-C3模块。

第一步,导入常用包

python 复制代码
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn.functional as F
import random
from time import time
import numpy as np
import pandas as pd
import datetime
import gc
import os
import copy
os.environ['KMP_DUPLICATE_LIB_OK']='True'  # 用于避免jupyter环境突然关闭
torch.backends.cudnn.benchmark=True  # 用于加速GPU运算的代码

设置随机数种子

python 复制代码
torch.manual_seed(428)
torch.cuda.manual_seed(428)
torch.cuda.manual_seed_all(428)
random.seed(428)
np.random.seed(428)

创建设备对象,并且查看GPU数量

python 复制代码
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device, torch.cuda.device_count() # (device(type='cuda'), 2)

数据集

本次数据集是使用之前用过的天气识别的数据集,分别有四个类别,cloudy、rain、shine、sunrise,不同的类别存放在不同的文件夹中,文件夹名是类别名。

使用pathlib查看类别

python 复制代码
import pathlib
data_dir = './data/weather_photos/'
data_dir = pathlib.Path(data_dir) # 转成pathlib.Path对象
data_paths = list(data_dir.glob('*')) 
classNames = [str(path).split("/")[2] for path in data_paths]
classNames # ['cloudy', 'sunrise', 'shine', 'rain']

使用transforms对数据集进行统一处理,并且根据文件夹名映射对应标签

python 复制代码
all_transforms = transforms.Compose([
    transforms.Resize([224, 224]),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 标准化
])

total_data = datasets.ImageFolder("./data/weather_photos/", transform=all_transforms)
total_data.class_to_idx # {'cloudy': 0, 'rain': 1, 'shine': 2, 'sunrise': 3}

随机查看五张图片

python 复制代码
def plotsample(data):
    fig, axs = plt.subplots(1, 5, figsize=(10, 10)) #建立子图
    for i in range(5):
        num = random.randint(0, len(data) - 1) #首先选取随机数,随机选取五次
        #抽取数据中对应的图像对象,make_grid函数可将任意格式的图像的通道数升为3,而不改变图像原始的数据
        #而展示图像用的imshow函数最常见的输入格式也是3通道
        npimg = torchvision.utils.make_grid(data[num][0]).numpy()
        nplabel = data[num][1] #提取标签 
        #将图像由(3, weight, height)转化为(weight, height, 3),并放入imshow函数中读取
        axs[i].imshow(np.transpose(npimg, (1, 2, 0))) 
        axs[i].set_title(nplabel) #给每个子图加上标签
        axs[i].axis("off") #消除每个子图的坐标轴

plotsample(total_data)

根据8比2划分数据集和测试集,并且利用DataLoader划分批次和随机打乱

python 复制代码
train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_ds, test_ds = torch.utils.data.random_split(total_data, [train_size, test_size])

batch_size = 32
train_dl = torch.utils.data.DataLoader(train_ds,
                                        batch_size=batch_size,
                                        shuffle=True,
                                      )
test_dl = torch.utils.data.DataLoader(test_ds,
                                        batch_size=batch_size,
                                        shuffle=True,
                                     )

len(train_dl.dataset), len(test_dl.dataset) # (901, 226)

模型选择

此次模型借用K同学所绘制的模型图

定义了一个autopad函数,用于确定卷积操作的填充,如果提供了p参数,则函数将使用提供的填充大小,否则函数中的填充计算将根据卷积核的大小k来确定,如果k是整数,那么将应用方形卷积核,填充大小将设置为k // 2,如果k是一个包含两个整数的列表,那么将应用矩形卷积核,填充大小将分别设置为列表中两个值的一半。

python 复制代码
def autopad(k, p=None): 
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k] 
    return p

定义自定义卷积层,在init方法中:创建了一个卷积层 self.conv,使用了 nn.Conv2d,该卷积层接受输入通道数 c1,输出通道数 c2,卷积核大小 k,步幅 s,填充 p,分组数 g,并且没有偏置项(bias=False)。创建了一个批归一化层 self.bn,用于规范化卷积层的输出。创建了一个激活函数层 self.act,其类型取决于 act 参数。如果 act 为 True,它将使用 SiLU(Sigmoid Linear Unit)激活函数;如果 act 为其他的 nn.Module 类,它将直接使用提供的激活函数;否则,它将使用恒等函数(nn.Identity)作为激活函数。其中,SiLU激活函数为SiLU(x) = x * sigmoid(x)。

python 复制代码
class Conv(nn.Module):
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

定义Bottleneck类,这个模块的作用是实现标准的残差连接,以提高网络性能。在 init方法中:计算了中间隐藏通道数 c_,它是输出通道数 c2 乘以扩张因子 e 的整数部分。创建了两个 Conv 模块 self.cv1 和 self.cv2,分别用于进行卷积操作。self.cv1 使用 1x1 的卷积核,将输入特征图的通道数从 c1 变换为 c_。self.cv2 使用 3x3 的卷积核,将通道数从 c_ 变换为 c2。创建了一个布尔值 self.add,用于指示是否应用残差连接。self.add 为 True 的条件是 shortcut 为 True 且输入通道数 c1 等于输出通道数 c2。

在forward 方法中,首先,通过 self.cv1(x) 将输入 x 传递给第一个卷积层,然后通过self.cv2(self.cv1(x)) 将结果传递给第二个卷积层。最后,根据 self.add 的值来决定是否应用残差连接。如果 self.add 为 True,将输入 x 与第二个卷积层的输出相加,否则直接返回第二个卷积层的输出。这样模块在需要时应用残差连接,以保留和传递更多的信息。

python 复制代码
class Bottleneck(nn.Module):
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e) 
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

C3模块整体如上图所示,cv1 和 cv2 是两个独立的卷积操作,它们的输入通道数都是 c1,并经过相应的卷积操作后,输出通道数变为 c_。这是为了将输入特征映射进行降维和变换。cv3 接受 cv1 和 cv2 的输出,并且希望在这两部分特征上进行进一步的操作。为了能够将它们连接起来,cv3 的输入通道数必须匹配这两部分特征的输出通道数的总和,因此是 2 * c_。其中这个模块可以叠加n个Bottleneck块。

python 复制代码
class C3(nn.Module):
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e) 
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1) 
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))

最后定义我们的模型

python 复制代码
class model_K(nn.Module):
    def __init__(self):
        super(model_K, self).__init__()
        
        # 卷积模块
        self.Conv = Conv(3, 32, 3, 2) 
        
        # C3模块1
        self.C3_1 = C3(32, 64, 3, 2)
        
        # 全连接网络层,用于分类
        self.classifier = nn.Sequential(
            nn.Linear(in_features=802816, out_features=100),
            nn.ReLU(),
            nn.Linear(in_features=100, out_features=4)
        )
        
    def forward(self, x):
        x = self.Conv(x)
        x = self.C3_1(x)
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)

        return x

model = model_K().to(device)

使用summary查看模型架构

python 复制代码
from torchsummary import summary
summary(model, input_size=(3, 224, 224))

开始训练

定义训练函数

python 复制代码
def train(dataloader, model, loss_fn, opt):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    train_acc, train_loss = 0, 0

    for X, y in dataloader:
        X, y = X.to(device), y.to(device)
        pred = model(X)
        loss = loss_fn(pred, y)

        opt.zero_grad()
        loss.backward()
        opt.step()

        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()

    train_acc /= size
    train_loss /= num_batches
    return train_acc, train_loss

定义测试函数

python 复制代码
def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    test_acc, test_loss = 0, 0
    with torch.no_grad():
        for X, y in dataloader:
            X, y = X.to(device), y.to(device)
            pred = model(X)
            loss = loss_fn(pred, y)
    
            test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
            test_loss += loss.item()

    test_acc /= size
    test_loss /= num_batches
    return test_acc, test_loss

定义学习率、损失函数、优化算法

python 复制代码
loss_fn = nn.CrossEntropyLoss()
learn_rate = 0.0001
opt = torch.optim.Adam(model.parameters(), lr=learn_rate)

开始训练,epoch设置为30

python 复制代码
import time
epochs = 30
train_loss = []
train_acc = []
test_loss = []
test_acc = []

T1 = time.time()

best_acc = 0
best_model = 0

for epoch in range(epochs):

    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval() # 确保模型不会进行训练操作
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)

    if epoch_test_acc > best_acc:
        best_acc = epoch_test_acc
        best_model = copy.deepcopy(model)
        
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    print("epoch:%d, train_acc:%.1f%%, train_loss:%.3f, test_acc:%.1f%%, test_loss:%.3f"
          % (epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))

T2 = time.time()
print('程序运行时间:%s秒' % (T2 - T1))

PATH = './best_model.pth'  # 保存的参数文件名
if best_model is not None:
    torch.save(best_model.state_dict(), PATH)
    print('保存最佳模型')
print("Done")

可视化

将训练与测试过程可视化

python 复制代码
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

模型预测

定义预测函数

python 复制代码
from PIL import Image 

classes = list(total_data.class_to_idx)

def predict_one_image(image_path, model, transform, classes):
    
    test_img = Image.open(image_path).convert('RGB')
    plt.imshow(test_img)  # 展示预测的图片

    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)
    
    model.eval()
    output = model(img)

    _,pred = torch.max(output,1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')

预测一张图片

python 复制代码
predict_one_image(image_path='./data/weather_photos/cloudy/cloudy10.jpg', 
                  model=model, 
                  transform=all_transforms, 
                  classes=classes) # 预测结果是:cloudy

查看一下最佳模型的epoch_test_acc, epoch_test_loss

python 复制代码
best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
epoch_test_acc, epoch_test_loss # (0.9469026548672567, 0.18065014126477763)

总结

通过这个实验可以了解如何在模型中实现残差连接,这对于训练深度神经网络特别有用。残差连接允许在模块之间传递和保留信息,有助于缓解梯度消失问题和训练更深的网络。

相关推荐
深蓝海拓6 分钟前
Pyside6(PyQT5)中的QTableView与QSqlQueryModel、QSqlTableModel的联合使用
数据库·python·qt·pyqt
IE066 分钟前
深度学习系列76:流式tts的一个简单实现
人工智能·深度学习
GIS数据转换器10 分钟前
城市生命线安全保障:技术应用与策略创新
大数据·人工智能·安全·3d·智慧城市
无须logic ᭄14 分钟前
CrypTen项目实践
python·机器学习·密码学·同态加密
Channing Lewis27 分钟前
flask常见问答题
后端·python·flask
Channing Lewis28 分钟前
如何保护 Flask API 的安全性?
后端·python·flask
水兵没月1 小时前
钉钉群机器人设置——python版本
python·机器人·钉钉
一水鉴天1 小时前
为AI聊天工具添加一个知识系统 之65 详细设计 之6 变形机器人及伺服跟随
人工智能
我想学LINUX2 小时前
【2024年华为OD机试】 (A卷,100分)- 微服务的集成测试(JavaScript&Java & Python&C/C++)
java·c语言·javascript·python·华为od·微服务·集成测试
数据小爬虫@5 小时前
深入解析:使用 Python 爬虫获取苏宁商品详情
开发语言·爬虫·python