Pytorch从零开始实战------YOLOv5-C3模块实现
本系列来源于365天深度学习训练营
原作者K同学
文章目录
环境准备
本文基于Jupyter notebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论基础。本次实验的目的理解YOLOv5-C3模块。
第一步,导入常用包
python
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn.functional as F
import random
from time import time
import numpy as np
import pandas as pd
import datetime
import gc
import os
import copy
os.environ['KMP_DUPLICATE_LIB_OK']='True' # 用于避免jupyter环境突然关闭
torch.backends.cudnn.benchmark=True # 用于加速GPU运算的代码
设置随机数种子
python
torch.manual_seed(428)
torch.cuda.manual_seed(428)
torch.cuda.manual_seed_all(428)
random.seed(428)
np.random.seed(428)
创建设备对象,并且查看GPU数量
python
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device, torch.cuda.device_count() # (device(type='cuda'), 2)
数据集
本次数据集是使用之前用过的天气识别的数据集,分别有四个类别,cloudy、rain、shine、sunrise,不同的类别存放在不同的文件夹中,文件夹名是类别名。
使用pathlib查看类别
python
import pathlib
data_dir = './data/weather_photos/'
data_dir = pathlib.Path(data_dir) # 转成pathlib.Path对象
data_paths = list(data_dir.glob('*'))
classNames = [str(path).split("/")[2] for path in data_paths]
classNames # ['cloudy', 'sunrise', 'shine', 'rain']
使用transforms对数据集进行统一处理,并且根据文件夹名映射对应标签
python
all_transforms = transforms.Compose([
transforms.Resize([224, 224]),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 标准化
])
total_data = datasets.ImageFolder("./data/weather_photos/", transform=all_transforms)
total_data.class_to_idx # {'cloudy': 0, 'rain': 1, 'shine': 2, 'sunrise': 3}
随机查看五张图片
python
def plotsample(data):
fig, axs = plt.subplots(1, 5, figsize=(10, 10)) #建立子图
for i in range(5):
num = random.randint(0, len(data) - 1) #首先选取随机数,随机选取五次
#抽取数据中对应的图像对象,make_grid函数可将任意格式的图像的通道数升为3,而不改变图像原始的数据
#而展示图像用的imshow函数最常见的输入格式也是3通道
npimg = torchvision.utils.make_grid(data[num][0]).numpy()
nplabel = data[num][1] #提取标签
#将图像由(3, weight, height)转化为(weight, height, 3),并放入imshow函数中读取
axs[i].imshow(np.transpose(npimg, (1, 2, 0)))
axs[i].set_title(nplabel) #给每个子图加上标签
axs[i].axis("off") #消除每个子图的坐标轴
plotsample(total_data)
根据8比2划分数据集和测试集,并且利用DataLoader划分批次和随机打乱
python
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_ds, test_ds = torch.utils.data.random_split(total_data, [train_size, test_size])
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_ds,
batch_size=batch_size,
shuffle=True,
)
test_dl = torch.utils.data.DataLoader(test_ds,
batch_size=batch_size,
shuffle=True,
)
len(train_dl.dataset), len(test_dl.dataset) # (901, 226)
模型选择
此次模型借用K同学所绘制的模型图
定义了一个autopad函数,用于确定卷积操作的填充,如果提供了p参数,则函数将使用提供的填充大小,否则函数中的填充计算将根据卷积核的大小k来确定,如果k是整数,那么将应用方形卷积核,填充大小将设置为k // 2,如果k是一个包含两个整数的列表,那么将应用矩形卷积核,填充大小将分别设置为列表中两个值的一半。
python
def autopad(k, p=None):
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k]
return p
定义自定义卷积层,在init方法中:创建了一个卷积层 self.conv,使用了 nn.Conv2d,该卷积层接受输入通道数 c1,输出通道数 c2,卷积核大小 k,步幅 s,填充 p,分组数 g,并且没有偏置项(bias=False)。创建了一个批归一化层 self.bn,用于规范化卷积层的输出。创建了一个激活函数层 self.act,其类型取决于 act 参数。如果 act 为 True,它将使用 SiLU(Sigmoid Linear Unit)激活函数;如果 act 为其他的 nn.Module 类,它将直接使用提供的激活函数;否则,它将使用恒等函数(nn.Identity)作为激活函数。其中,SiLU激活函数为SiLU(x) = x * sigmoid(x)。
python
class Conv(nn.Module):
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
def forward(self, x):
return self.act(self.bn(self.conv(x)))
定义Bottleneck类,这个模块的作用是实现标准的残差连接,以提高网络性能。在 init方法中:计算了中间隐藏通道数 c_,它是输出通道数 c2 乘以扩张因子 e 的整数部分。创建了两个 Conv 模块 self.cv1 和 self.cv2,分别用于进行卷积操作。self.cv1 使用 1x1 的卷积核,将输入特征图的通道数从 c1 变换为 c_。self.cv2 使用 3x3 的卷积核,将通道数从 c_ 变换为 c2。创建了一个布尔值 self.add,用于指示是否应用残差连接。self.add 为 True 的条件是 shortcut 为 True 且输入通道数 c1 等于输出通道数 c2。
在forward 方法中,首先,通过 self.cv1(x) 将输入 x 传递给第一个卷积层,然后通过self.cv2(self.cv1(x)) 将结果传递给第二个卷积层。最后,根据 self.add 的值来决定是否应用残差连接。如果 self.add 为 True,将输入 x 与第二个卷积层的输出相加,否则直接返回第二个卷积层的输出。这样模块在需要时应用残差连接,以保留和传递更多的信息。
python
class Bottleneck(nn.Module):
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
super().__init__()
c_ = int(c2 * e)
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_, c2, 3, 1, g=g)
self.add = shortcut and c1 == c2
def forward(self, x):
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
C3模块整体如上图所示,cv1 和 cv2 是两个独立的卷积操作,它们的输入通道数都是 c1,并经过相应的卷积操作后,输出通道数变为 c_。这是为了将输入特征映射进行降维和变换。cv3 接受 cv1 和 cv2 的输出,并且希望在这两部分特征上进行进一步的操作。为了能够将它们连接起来,cv3 的输入通道数必须匹配这两部分特征的输出通道数的总和,因此是 2 * c_。其中这个模块可以叠加n个Bottleneck块。
python
class C3(nn.Module):
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super().__init__()
c_ = int(c2 * e)
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.cv3 = Conv(2 * c_, c2, 1)
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
def forward(self, x):
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
最后定义我们的模型
python
class model_K(nn.Module):
def __init__(self):
super(model_K, self).__init__()
# 卷积模块
self.Conv = Conv(3, 32, 3, 2)
# C3模块1
self.C3_1 = C3(32, 64, 3, 2)
# 全连接网络层,用于分类
self.classifier = nn.Sequential(
nn.Linear(in_features=802816, out_features=100),
nn.ReLU(),
nn.Linear(in_features=100, out_features=4)
)
def forward(self, x):
x = self.Conv(x)
x = self.C3_1(x)
x = torch.flatten(x, start_dim=1)
x = self.classifier(x)
return x
model = model_K().to(device)
使用summary查看模型架构
python
from torchsummary import summary
summary(model, input_size=(3, 224, 224))
开始训练
定义训练函数
python
def train(dataloader, model, loss_fn, opt):
size = len(dataloader.dataset)
num_batches = len(dataloader)
train_acc, train_loss = 0, 0
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
loss = loss_fn(pred, y)
opt.zero_grad()
loss.backward()
opt.step()
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
定义测试函数
python
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
test_acc, test_loss = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
loss = loss_fn(pred, y)
test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss += loss.item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
定义学习率、损失函数、优化算法
python
loss_fn = nn.CrossEntropyLoss()
learn_rate = 0.0001
opt = torch.optim.Adam(model.parameters(), lr=learn_rate)
开始训练,epoch设置为30
python
import time
epochs = 30
train_loss = []
train_acc = []
test_loss = []
test_acc = []
T1 = time.time()
best_acc = 0
best_model = 0
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
model.eval() # 确保模型不会进行训练操作
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
if epoch_test_acc > best_acc:
best_acc = epoch_test_acc
best_model = copy.deepcopy(model)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
print("epoch:%d, train_acc:%.1f%%, train_loss:%.3f, test_acc:%.1f%%, test_loss:%.3f"
% (epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))
T2 = time.time()
print('程序运行时间:%s秒' % (T2 - T1))
PATH = './best_model.pth' # 保存的参数文件名
if best_model is not None:
torch.save(best_model.state_dict(), PATH)
print('保存最佳模型')
print("Done")
可视化
将训练与测试过程可视化
python
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 #分辨率
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
模型预测
定义预测函数
python
from PIL import Image
classes = list(total_data.class_to_idx)
def predict_one_image(image_path, model, transform, classes):
test_img = Image.open(image_path).convert('RGB')
plt.imshow(test_img) # 展示预测的图片
test_img = transform(test_img)
img = test_img.to(device).unsqueeze(0)
model.eval()
output = model(img)
_,pred = torch.max(output,1)
pred_class = classes[pred]
print(f'预测结果是:{pred_class}')
预测一张图片
python
predict_one_image(image_path='./data/weather_photos/cloudy/cloudy10.jpg',
model=model,
transform=all_transforms,
classes=classes) # 预测结果是:cloudy
查看一下最佳模型的epoch_test_acc, epoch_test_loss
python
best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
epoch_test_acc, epoch_test_loss # (0.9469026548672567, 0.18065014126477763)
总结
通过这个实验可以了解如何在模型中实现残差连接,这对于训练深度神经网络特别有用。残差连接允许在模块之间传递和保留信息,有助于缓解梯度消失问题和训练更深的网络。