Mxnet框架使用

目录

1.mxnet推理API

2.MXNET模型转ONNX

3.运行示例

1.mxnet推理API

python 复制代码
# 导入 MXNet 深度学习框架
import mxnet as mx  


if __name__ == '__main__':

    # 指定预训练模型的 JSON 文件
    json_file = 'resnext50_32x4d' 

    # 指定模型的参数文件
    params_file = 'resnext50_32x4d-0000.params'  

    # 使用 MXNet 加载模型的架构和参数
    sym, arg_params, aux_params = mx.model.load_checkpoint(json_file, 0) 
 
    # 创建一个模型对象
    mod = mx.mod.Module(symbol=sym, context=mx.cpu(), label_names=None)  
    # 绑定模型参数和输入数据的形状
    mod.bind(for_training=False, data_shapes=[('data', (1, 3, 224, 224))]) 

    # 设置模型的参数
    mod.set_params(arg_params, aux_params)
 
    # 将输入数据转换为 MXNet 的 NDArray 格式
    data = mx.nd.array(img)  

    # 使用模型进行推理,获取输出并转换为 NumPy 数组
    output = mod.predict(data).asnumpy()  

2.MXNET模型转ONNX

python 复制代码
import numpy as np
import mxnet as mx
from mxnet.contrib import onnx as onnx_mxnet


sym = "resnext50_32x4d-symbol.json"
params = "resnext50_32x4d-0000.params"
input_shape = (1 ,3 ,224 ,224)
onnx_file = './resnext50.onnx'

converted_model_path = onnx_mxnet.export_model(sym, params, [input_shape], np.float32, onnx_file)
# onnx                          1.14.0
# numpy                         1.23.2

3.运行示例

具体代码和模型见百度网盘:

https://pan.baidu.com/s/1iQELVg7xNjiIlSZZp47xag

提取码: 24ei

python 复制代码
# 导入 NumPy 库,并将其别名命名为 np
import numpy as np  
# 导入 OpenCV 库
import cv2  
 # 导入 MXNet 深度学习框架
import mxnet as mx 
# 导入时间库,用于计时
import time  


# 定义一个函数 show_top5,用于显示前5个类别及其概率
def show_top5(outputs):
    # 使用 softmax 函数对输出进行概率归一化
    output = softmax(outputs[0])  
    # 对概率从高到低排序,获取排序后的索引
    reverse_sort_index = np.argsort(output)[::-1]  
    # 打印标识,表示接下来是前5个类别
    print('-----TOP 5-----')  
    # 循环遍历前5个类别
    for i in range(5): 
        # 打印类别索引和对应的概率 
        print(reverse_sort_index[i], ':', output[reverse_sort_index[i]])  

# 定义 softmax 函数,用于计算 softmax 概率
def softmax(x):
    return np.exp(x) / sum(np.exp(x))


if __name__ == '__main__':
    # 从文件中加载图像
    img = cv2.imread('./space_shuttle_224.jpg') 

    # 对图像进行预处理,将其从 BGR 格式转换为 RGB 格式,并调整数据类型为 float32,
    # 然后进行维度转置和形状重塑,以匹配模型的输入格式 
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB).astype('float32').transpose(2, 0, 1).reshape(1, 3, 224, 224)

    # 指定预训练模型的 JSON 文件
    json_file = 'resnext50_32x4d'  

    # 指定模型的参数文件
    params_file = 'resnext50_32x4d-0000.params'  

    # 记录开始时间
    t1 = time.time()  

    # 使用 MXNet 加载模型的架构和参数
    sym, arg_params, aux_params = mx.model.load_checkpoint(json_file, 0)

    # 创建一个模型对象  
    mod = mx.mod.Module(symbol=sym, context=mx.cpu(), label_names=None) 
 
    # 绑定模型参数和输入数据的形状
    mod.bind(for_training=False, data_shapes=[('data', (1, 3, 224, 224))]) 

    # 设置模型的参数 
    mod.set_params(arg_params, aux_params)
  
    # 将输入数据转换为 MXNet 的 NDArray 格式
    data = mx.nd.array(img)  

    # 使用模型进行推理,获取输出并转换为 NumPy 数组
    output = mod.predict(data).asnumpy()  

    # 记录结束时间
    t2 = time.time()

    # 打印推理所需的时间  
    print("inf_time:", t2 - t1) 

    # 调用显示前5个类别及其概率的函数 
    show_top5(output) 

    # 打印 "done" 表示脚本执行完成 
    print('done') 
相关推荐
普密斯科技11 分钟前
手机外观边框缺陷视觉检测智慧方案
人工智能·计算机视觉·智能手机·自动化·视觉检测·集成测试
四口鲸鱼爱吃盐24 分钟前
Pytorch | 利用AI-FGTM针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python
lishanlu13626 分钟前
Pytorch分布式训练
人工智能·ddp·pytorch并行训练
日出等日落39 分钟前
从零开始使用MaxKB打造本地大语言模型智能问答系统与远程交互
人工智能·语言模型·自然语言处理
三木吧1 小时前
开发微信小程序的过程与心得
人工智能·微信小程序·小程序
whaosoft-1431 小时前
w~视觉~3D~合集5
人工智能
猫头虎1 小时前
新纪天工 开物焕彩:重大科技成就发布会参会感
人工智能·开源·aigc·开放原子·开源软件·gpu算力·agi
正在走向自律2 小时前
京东物流营销 Agent:智能驱动,物流新篇(13/30)
人工智能·ai agent·ai智能体·京东物流agent
南七澄江2 小时前
各种网站(学习资源及其他)
开发语言·网络·python·深度学习·学习·机器学习·ai
远洋录3 小时前
React性能优化实战:从理论到落地的最佳实践
前端·人工智能·react