DO LARGE LANGUAGE MODELS KNOW ABOUT FACTS?

本文是LLM系列文章,针对《DO LARGE LANGUAGE MODELS KNOW ABOUT FACTS?》的翻译。

@TOC

摘要

大型语言模型(LLM)最近推动了一系列自然语言处理任务的显著性能改进。在预训练和指令调整过程中获得的事实知识可以用于各种下游任务,如问答和语言生成。与显式存储事实知识的传统知识库不同,LLM在其参数中隐式存储事实。LLM生成的内容往往会出现不准确或偏离事实的情况,因为事实可能会被错误地归纳或随着时间的推移而过时。为此,我们旨在通过设计基准Pinocchio来全面评估LLM中事实知识的程度和范围。Pinocchio包含了2万个不同的事实问题,这些问题跨越了不同的来源、时间线、领域、地区和语言。此外,我们研究LLM是否能够组成多个事实,在时间上更新事实知识,对多个事实进行推理,识别细微的事实差异,并抵制对抗性例子。对不同大小和类型的LLM进行的大量实验表明,现有的LLM仍然缺乏事实知识,并且存在各种虚假的相关性。我们认为这是实现值得信赖的人工智能的关键瓶颈。Pinocchio数据集和我们的代码将公开。

1 引言

2 数据集构建

3 方法

4 实验

5 相关工作

6 结论

在这项工作中,我们调查了LLM是否能够记忆事实知识并基于其进行推理,跨越各种问题类别和提示策略。为此,我们策划了Pinocchio基准测试,这是一个包含20713个问题的综合测试平台,涵盖了七项不同复杂性的任务。通过在Pinocchio基准上评估LLM和提示方法,我们发现采用各种提示策略(如多样本和自我一致性)的不同类型的LLM在实际任务中的表现仍然不理想。提高LLM在复杂和微妙的NLP任务上的事实知识和推理能力仍然是一个悬而未决的研究问题,我们鼓励未来的工作在我们提出的Pinocchio基准的基础上发展。

相关推荐
慎独4136 分钟前
政策东风起,财富新赛道:绿色积分与消费商引领新型消费革命
人工智能
CICI1314141326 分钟前
自动化焊接机器人厂家哪家好?
人工智能·机器人·自动化
ZzzZ3141592636 分钟前
【无标题】
人工智能
Hcoco_me38 分钟前
大模型面试题19:梯度消失&梯度爆炸 纯白话文版
人工智能·rnn·深度学习·自然语言处理·word2vec
哈__39 分钟前
CodeLlama与昇腾NPU的实践之旅
人工智能·gitcode·sglang
GMICLOUD1 小时前
GMI Cloud@AI周报 | MiniMax 叩响港股大门;智谱 GLM-4.7 开源
人工智能·ai资讯
0x00071 小时前
进击的智谱 - GLM 4.7 双旦大礼
人工智能
_codemonster1 小时前
AI大模型入门到实战系列--使用Pytorch实现transformer文本分类
人工智能·pytorch·transformer
Elastic 中国社区官方博客1 小时前
Elasticsearch:在 X-mas 吃一些更健康的东西
android·大数据·数据库·人工智能·elasticsearch·搜索引擎·全文检索
DKHZ_OfficeAI1 小时前
开启AI办公新时代:Office+WPS双平台智能助手全面赋能
人工智能