DO LARGE LANGUAGE MODELS KNOW ABOUT FACTS?

本文是LLM系列文章,针对《DO LARGE LANGUAGE MODELS KNOW ABOUT FACTS?》的翻译。

@TOC

摘要

大型语言模型(LLM)最近推动了一系列自然语言处理任务的显著性能改进。在预训练和指令调整过程中获得的事实知识可以用于各种下游任务,如问答和语言生成。与显式存储事实知识的传统知识库不同,LLM在其参数中隐式存储事实。LLM生成的内容往往会出现不准确或偏离事实的情况,因为事实可能会被错误地归纳或随着时间的推移而过时。为此,我们旨在通过设计基准Pinocchio来全面评估LLM中事实知识的程度和范围。Pinocchio包含了2万个不同的事实问题,这些问题跨越了不同的来源、时间线、领域、地区和语言。此外,我们研究LLM是否能够组成多个事实,在时间上更新事实知识,对多个事实进行推理,识别细微的事实差异,并抵制对抗性例子。对不同大小和类型的LLM进行的大量实验表明,现有的LLM仍然缺乏事实知识,并且存在各种虚假的相关性。我们认为这是实现值得信赖的人工智能的关键瓶颈。Pinocchio数据集和我们的代码将公开。

1 引言

2 数据集构建

3 方法

4 实验

5 相关工作

6 结论

在这项工作中,我们调查了LLM是否能够记忆事实知识并基于其进行推理,跨越各种问题类别和提示策略。为此,我们策划了Pinocchio基准测试,这是一个包含20713个问题的综合测试平台,涵盖了七项不同复杂性的任务。通过在Pinocchio基准上评估LLM和提示方法,我们发现采用各种提示策略(如多样本和自我一致性)的不同类型的LLM在实际任务中的表现仍然不理想。提高LLM在复杂和微妙的NLP任务上的事实知识和推理能力仍然是一个悬而未决的研究问题,我们鼓励未来的工作在我们提出的Pinocchio基准的基础上发展。

相关推荐
liulanba3 分钟前
AI Agent技术完整指南 第一部分:基础理论
数据库·人工智能·oracle
自动化代码美学4 分钟前
【AI白皮书】AI应用运行时
人工智能
小CC吃豆子8 分钟前
openGauss :核心定位 + 核心优势 + 适用场景
人工智能
一瞬祈望16 分钟前
⭐ 深度学习入门体系(第 7 篇): 什么是损失函数?
人工智能·深度学习·cnn·损失函数
徐小夕@趣谈前端25 分钟前
15k star的开源项目 Next AI Draw.io:AI 加持下的图表绘制工具
人工智能·开源·draw.io
优爱蛋白34 分钟前
MMP-9(20-469) His Tag 蛋白:高活性可溶性催化结构域的研究工具
人工智能·健康医疗
阿正的梦工坊35 分钟前
Kronecker积详解
人工智能·深度学习·机器学习
Rui_Freely36 分钟前
Vins-Fusion之ROS2(节点创建、订阅者、发布者)(一)
人工智能·计算机视觉
快降重37 分钟前
投稿前的“精准体检”:自查查重,如何选择可靠的第三方工具?
人工智能·aigc·写作·降重·查重·降ai
麦麦大数据1 小时前
F067 中医养生知识图谱健康问答系统+膳食食疗系统
人工智能·知识图谱·问答·养生·膳食·食疗