DO LARGE LANGUAGE MODELS KNOW ABOUT FACTS?

本文是LLM系列文章,针对《DO LARGE LANGUAGE MODELS KNOW ABOUT FACTS?》的翻译。

@TOC

摘要

大型语言模型(LLM)最近推动了一系列自然语言处理任务的显著性能改进。在预训练和指令调整过程中获得的事实知识可以用于各种下游任务,如问答和语言生成。与显式存储事实知识的传统知识库不同,LLM在其参数中隐式存储事实。LLM生成的内容往往会出现不准确或偏离事实的情况,因为事实可能会被错误地归纳或随着时间的推移而过时。为此,我们旨在通过设计基准Pinocchio来全面评估LLM中事实知识的程度和范围。Pinocchio包含了2万个不同的事实问题,这些问题跨越了不同的来源、时间线、领域、地区和语言。此外,我们研究LLM是否能够组成多个事实,在时间上更新事实知识,对多个事实进行推理,识别细微的事实差异,并抵制对抗性例子。对不同大小和类型的LLM进行的大量实验表明,现有的LLM仍然缺乏事实知识,并且存在各种虚假的相关性。我们认为这是实现值得信赖的人工智能的关键瓶颈。Pinocchio数据集和我们的代码将公开。

1 引言

2 数据集构建

3 方法

4 实验

5 相关工作

6 结论

在这项工作中,我们调查了LLM是否能够记忆事实知识并基于其进行推理,跨越各种问题类别和提示策略。为此,我们策划了Pinocchio基准测试,这是一个包含20713个问题的综合测试平台,涵盖了七项不同复杂性的任务。通过在Pinocchio基准上评估LLM和提示方法,我们发现采用各种提示策略(如多样本和自我一致性)的不同类型的LLM在实际任务中的表现仍然不理想。提高LLM在复杂和微妙的NLP任务上的事实知识和推理能力仍然是一个悬而未决的研究问题,我们鼓励未来的工作在我们提出的Pinocchio基准的基础上发展。

相关推荐
2401_841495641 小时前
【计算机视觉】基于复杂环境下的车牌识别
人工智能·python·算法·计算机视觉·去噪·车牌识别·字符识别
倔强青铜三1 小时前
苦练Python第66天:文件操作终极武器!shutil模块完全指南
人工智能·python·面试
倔强青铜三1 小时前
苦练Python第65天:CPU密集型任务救星!多进程multiprocessing模块实战解析,攻破GIL限制!
人工智能·python·面试
强哥之神2 小时前
浅谈目前主流的LLM软件技术栈:Kubernetes + Ray + PyTorch + vLLM 的协同架构
人工智能·语言模型·自然语言处理·transformer·openai·ray
zskj_qcxjqr2 小时前
七彩喜艾灸机器人:当千年中医智慧遇上现代科技
大数据·人工智能·科技·机器人
Zack_Liu3 小时前
深度学习基础模块
人工智能·深度学习
zy_destiny3 小时前
【工业场景】用YOLOv8实现抽烟识别
人工智能·python·算法·yolo·机器学习·计算机视觉·目标跟踪
狠活科技3 小时前
免登录!免安装ClI,Claude Code官方插件接入API使用教程
人工智能·vscode·ai编程
闲看云起3 小时前
Bert:从“读不懂上下文”的AI,到真正理解语言
论文阅读·人工智能·深度学习·语言模型·自然语言处理·bert
nueroamazing4 小时前
PPT-EA:PPT自动生成器
vue.js·python·语言模型·flask·大模型·项目·ppt