Pytorch里面参数更新前为什么要梯度手动置为0?

因为在一般情况下,每次minibatch之后,都会计算得到一个loss,进而计算该loss关于全局参数的梯度。如果在下一次minibatch 进入模型,计算得到相应的loss和梯度之前,不对优化器的梯度进行置0操作,那么几次batch的梯度会有一个累积效应,影响模型参数的优化。

在每一次batch'训练完之后,计算得到loss损失函数和相应梯度,都会对模型参数进行调整,那么该batch数据在这一轮训练里面的作用已经完成了。我们不希望这些优化过模型参数的batch的loss梯度累积起来,继续对模型参数优化产生影响。

相关推荐
ghgxm5208 分钟前
Fastapi_00_学习方向 ——无编程基础如何用AI实现APP生成
人工智能·学习·fastapi
曲幽16 分钟前
FastAPI多进程部署:定时任务重复执行?手把手教你用锁搞定
redis·python·fastapi·web·lock·works
余俊晖1 小时前
3秒实现语音克隆的Qwen3-TTS的Qwen-TTS-Tokenizer和方法架构概览
人工智能·语音识别
森屿~~1 小时前
AI 手势识别系统:踩坑与实现全记录 (PyTorch + MediaPipe)
人工智能·pytorch·python
运维行者_1 小时前
2026 技术升级,OpManager 新增 AI 网络拓扑与带宽预测功能
运维·网络·数据库·人工智能·安全·web安全·自动化
淬炼之火1 小时前
图文跨模态融合基础:大语言模型(LLM)
人工智能·语言模型·自然语言处理
Elastic 中国社区官方博客1 小时前
Elasticsearch:上下文工程 vs. 提示词工程
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
忧郁的橙子.2 小时前
26期_01_Pyhton文件的操作
开发语言·python
正宗咸豆花2 小时前
LangGraph实战:构建可自愈的多智能体客服系统架构
人工智能·系统架构·claude
檐下翻书1732 小时前
文本创作进化:从辅助写作到内容策划的全面赋能
人工智能