Pytorch里面参数更新前为什么要梯度手动置为0?

因为在一般情况下,每次minibatch之后,都会计算得到一个loss,进而计算该loss关于全局参数的梯度。如果在下一次minibatch 进入模型,计算得到相应的loss和梯度之前,不对优化器的梯度进行置0操作,那么几次batch的梯度会有一个累积效应,影响模型参数的优化。

在每一次batch'训练完之后,计算得到loss损失函数和相应梯度,都会对模型参数进行调整,那么该batch数据在这一轮训练里面的作用已经完成了。我们不希望这些优化过模型参数的batch的loss梯度累积起来,继续对模型参数优化产生影响。

相关推荐
光路科技2 小时前
人工智能时代,工业以太网正在“进化”成什么样?
人工智能
翔云 OCR API2 小时前
承兑汇票识别接口技术解析-开发者接口
开发语言·前端·数据库·人工智能·ocr
roman_日积跬步-终至千里3 小时前
【模式识别与机器学习(16)】聚类分析【1】:基础概念与常见方法
人工智能·机器学习
nvd113 小时前
一个简单的GitHub AI Agent 实现指南
人工智能·langchain
Trouville013 小时前
Pycharm软件初始化设置,字体和shell路径如何设置到最舒服
ide·python·pycharm
阿里云大数据AI技术3 小时前
【新模型速递】PAI-Model Gallery云上一键部署DeepSeek-V3.2模型
人工智能
阿恩.7703 小时前
2026年1月最新计算机、人工智能、经济管理国际会议:选对会议 = 论文成功率翻倍
人工智能·经验分享·笔记·计算机网络·金融·区块链
高-老师3 小时前
WRF模式与Python融合技术在多领域中的应用及精美绘图
人工智能·python·wrf模式
小白学大数据3 小时前
基于Splash的搜狗图片动态页面渲染爬取实战指南
开发语言·爬虫·python
xinyu_Jina3 小时前
ikTok Watermark Remover:客户端指纹、行为建模与自动化逆向工程
前端·人工智能·程序人生·信息可视化