Pytorch里面参数更新前为什么要梯度手动置为0?

因为在一般情况下,每次minibatch之后,都会计算得到一个loss,进而计算该loss关于全局参数的梯度。如果在下一次minibatch 进入模型,计算得到相应的loss和梯度之前,不对优化器的梯度进行置0操作,那么几次batch的梯度会有一个累积效应,影响模型参数的优化。

在每一次batch'训练完之后,计算得到loss损失函数和相应梯度,都会对模型参数进行调整,那么该batch数据在这一轮训练里面的作用已经完成了。我们不希望这些优化过模型参数的batch的loss梯度累积起来,继续对模型参数优化产生影响。

相关推荐
余炜yw12 分钟前
【LSTM实战】跨越千年,赋诗成文:用LSTM重现唐诗的韵律与情感
人工智能·rnn·深度学习
drebander19 分钟前
使用 Java Stream 优雅实现List 转化为Map<key,Map<key,value>>
java·python·list
莫叫石榴姐29 分钟前
数据科学与SQL:组距分组分析 | 区间分布问题
大数据·人工智能·sql·深度学习·算法·机器学习·数据挖掘
威威猫的栗子42 分钟前
Python Turtle召唤童年:喜羊羊与灰太狼之懒羊羊绘画
开发语言·python
如若1231 小时前
利用 `OpenCV` 和 `Matplotlib` 库进行图像读取、颜色空间转换、掩膜创建、颜色替换
人工智能·opencv·matplotlib
YRr YRr1 小时前
深度学习:神经网络中的损失函数的使用
人工智能·深度学习·神经网络
ChaseDreamRunner1 小时前
迁移学习理论与应用
人工智能·机器学习·迁移学习
Guofu_Liao1 小时前
大语言模型---梯度的简单介绍;梯度的定义;梯度计算的方法
人工智能·语言模型·矩阵·llama
我爱学Python!1 小时前
大语言模型与图结构的融合: 推荐系统中的新兴范式
人工智能·语言模型·自然语言处理·langchain·llm·大语言模型·推荐系统
墨染风华不染尘1 小时前
python之开发笔记
开发语言·笔记·python