因为在一般情况下,每次minibatch之后,都会计算得到一个loss,进而计算该loss关于全局参数的梯度。如果在下一次minibatch 进入模型,计算得到相应的loss和梯度之前,不对优化器的梯度进行置0操作,那么几次batch的梯度会有一个累积效应,影响模型参数的优化。
在每一次batch'训练完之后,计算得到loss损失函数和相应梯度,都会对模型参数进行调整,那么该batch数据在这一轮训练里面的作用已经完成了。我们不希望这些优化过模型参数的batch的loss梯度累积起来,继续对模型参数优化产生影响。