Pytorch里面参数更新前为什么要梯度手动置为0?

因为在一般情况下,每次minibatch之后,都会计算得到一个loss,进而计算该loss关于全局参数的梯度。如果在下一次minibatch 进入模型,计算得到相应的loss和梯度之前,不对优化器的梯度进行置0操作,那么几次batch的梯度会有一个累积效应,影响模型参数的优化。

在每一次batch'训练完之后,计算得到loss损失函数和相应梯度,都会对模型参数进行调整,那么该batch数据在这一轮训练里面的作用已经完成了。我们不希望这些优化过模型参数的batch的loss梯度累积起来,继续对模型参数优化产生影响。

相关推荐
驭白.4 分钟前
不止于自动化:新能源汽车智造的数字基座如何搭建?
大数据·人工智能·自动化·汽车·数字化转型·制造业
企业智能研究25 分钟前
什么是数据治理?数据治理对企业有什么用?
大数据·人工智能·数据分析·agent
阿里云大数据AI技术39 分钟前
面向 Interleaved Thinking 的大模型 Agent 蒸馏实践
人工智能
AI Echoes1 小时前
LangChain 非分割类型的文档转换器使用技巧
人工智能·python·langchain·prompt·agent
哔哔龙1 小时前
LangChain核心组件可用工具
人工智能
全栈独立开发者1 小时前
点餐系统装上了“DeepSeek大脑”:基于 Spring AI + PgVector 的 RAG 落地指南
java·人工智能·spring
程序之巅1 小时前
VS code 远程python代码debug
android·java·python
2501_941878741 小时前
在班加罗尔工程实践中构建可持续演进的机器学习平台体系与技术实现分享
人工智能·机器学习
guoketg1 小时前
BERT的技术细节和面试问题汇总
人工智能·深度学习·bert
永远在Debug的小殿下1 小时前
SLAM开发环境(虚拟机的安装)
人工智能