Pytorch里面参数更新前为什么要梯度手动置为0?

因为在一般情况下,每次minibatch之后,都会计算得到一个loss,进而计算该loss关于全局参数的梯度。如果在下一次minibatch 进入模型,计算得到相应的loss和梯度之前,不对优化器的梯度进行置0操作,那么几次batch的梯度会有一个累积效应,影响模型参数的优化。

在每一次batch'训练完之后,计算得到loss损失函数和相应梯度,都会对模型参数进行调整,那么该batch数据在这一轮训练里面的作用已经完成了。我们不希望这些优化过模型参数的batch的loss梯度累积起来,继续对模型参数优化产生影响。

相关推荐
澳鹏Appen27 分钟前
数据集月度精选 | 高质量具身智能数据集:打开机器人“感知-决策-动作”闭环的钥匙
人工智能·机器人·具身智能
文人sec32 分钟前
pytest1-接口自动化测试场景
软件测试·python·单元测试·pytest
q***71012 小时前
开源模型应用落地-工具使用篇-Spring AI-Function Call(八)
人工智能·spring·开源
极限实验室2 小时前
Coco AI 参选 Gitee 2025 最受欢迎开源软件!您的每一票,都是对中国开源的硬核支持
人工智能·开源
secondyoung2 小时前
Mermaid流程图高效转换为图片方案
c语言·人工智能·windows·vscode·python·docker·流程图
iFlow_AI2 小时前
iFlow CLI Hooks 「从入门到实战」应用指南
开发语言·前端·javascript·人工智能·ai·iflow·iflow cli
Shang180989357262 小时前
THC63LVD1027D一款10位双链路LVDS信号中继器芯片,支持WUXGA分辨率视频数据传输THC63LVD1027支持30位数据通道方案
人工智能·考研·信息与通信·信号处理·thc63lvd1027d·thc63lvd1027
nini_boom2 小时前
**论文初稿撰写工具2025推荐,高效写作与智能辅助全解析*
大数据·python·信息可视化
飞哥数智坊3 小时前
项目太大,AI无法理解?试试这3种思路
人工智能·ai编程
桜吹雪3 小时前
手搓一个简易Agent
前端·人工智能·后端