python
from time import time
from bisect import bisect
from random import choices, seed
from itertools import combinations
def func1(seq):
# 暴力穷举,从最长的子序列开始查找,大约耗时5小时
for n in range(len(seq)-1, 0, -1): # 依次查找长度为len(seq-1),len(sqe-1)-1,....3,2,1
for sub in combinations(seq,n): # 枚举出seq中所有的长度为n的序列,元素原来的先后顺序不变
if list(sub) == sorted(sub):
return sub # 因为是从最长向最短判断的,产生返回的肯定是长度最长的
def func2(seq):
# 获取可能的最大长度,缩小后面循环的范围,大约耗时1小时
# 比fun1的优点是先判断出最大可能长度
m = 0
for i in range(len(seq)-1):
if seq[i+1]>seq[i]:
m = m+1
if seq[-1] > seq[-2]:
m = m+1
for n in range(m+1, 0, -1):
for sub in combinations(seq, n):
if list(sub) == sorted(sub):
return sub
def func3(seq):
# 查找最长非递减子序列的长度,直接确定后面组合时的长度,4秒
# 动态规划法,查表
length = [1]*len(seq)
for index1, value1 in enumerate(seq): # 如果前面有更小的元素,就更新当前元素为终点的子序列长度
for index2 in range(index1):
if seq[index2] <= value1: # 存在前面数小于本轮待比较数
length[index1] = max(length[index1], length[index2]+1) # 迭代是从0开始的,length最小的序号会最先确定长度
m = max(length)
for sub in combinations(seq, m):
if list(sub) == sorted(sub):
return sub
def func4(seq):
# 查找最长非递减子序列的长度,直接确定后面组合时的长度,3.66秒
# 比func3的优点时,先排除掉无效子序列,减少第2步比较数量
length = [1]*len(seq)
for index1, value1 in enumerate(seq):
for index2 in range(index1):
if seq[index2] <= value1:
length[index1] = max(length[index1], length[index2]+1)
m = max(length)
for sub in combinations(seq, m):
# 测试每个子序列中是否有违反顺序的相邻元素,避免对整个子序列排序
for i,v in enumerate(sub[:-1]):
if sub[i] > sub[i+1]:
break
else:
return sub
def func5(seq):
# 查找最长非递减子序列的长度,直接确定后面组合时的长度,3.7秒
# [7,1,2,5,3,4,0,6,2]
# sub = [1,2,3,4,6]
# sub = [7]
# sub = [1]
# sub = [1,2,5]
# sub = [1,2,3]
# sub = [1,2,3,4]
# sub = [0,2,3,4]
# sub = [0,2,3,4,6]
# sub = [0,2,3,4,6]
sub = []
m = 0
# 循环结束后,m为最大非递减序列的长度,但sub并不是要求的子序列
for value in seq:
index = bisect(sub, value) # 使用bisect,要求sub必须为有序排列
if index == m:
sub.append(value)
m = m + 1
else:
sub[index] = value
for sub in combinations(seq, m):
# 测试每个子序列中是否有违反顺序的相邻元素,避免对整个子序列排序
for i,v in enumerate(sub[:-1]):
if sub[i] > sub[i+1]:
break
else:
return sub
def func6(seq):
# 空间换时间,用来存放当前元素为终点的非递减子序列(暂未理解)
sub = [[num] for num in seq]
for index1, value1 in enumerate(seq[1:], start=1):
for index2 in range(index1):
if seq[index2] <= value1:
for each in sub[index2]:
if isinstance(each, int):
each = [each]
sub[index1].append(each + [value1])
# 只保留以当前元素为终点的最长非递减子序列
sub[index1][1:] = [max(sub[index1][1:], default=[], key=len)]
sub = list(map(lambda items: max(items[1:],default=[],key=len),sub))
return max(sub, key=len)
def main():
seed(20231106) # 填充种子,随机生成数据相同
data = choices(range(1000), k = 35) # 从0-9999数据中随机取35个数据
for func in (func3,func4,func5,func6):
start = time() # 取LNDS前时刻
for _ in range(1):
r = func(data) # 类似与函数指针
print(time()-start) # 打印取数耗时,单位ms
print(r) # 打印LNDS
if __name__ == '__main__':
main()
引用位置(不带注释):周末花了10小时把最长非递减子序列算法速度提高了几十亿倍