PyTorch入门学习(十五):现有网络模型的使用及修改

目录

一、使用现有网络模型

二、修改现有网络模型


一、使用现有网络模型

PyTorch提供了许多流行的深度学习模型,这些模型在大规模图像数据集上进行了预训练。其中一个著名的模型是VGG16。下面是如何使用VGG16模型的示例代码:

python 复制代码
import torchvision
from torch import nn
from torchvision.models import VGG16

# 使用不带预训练权重的VGG16模型
vgg16_false = torchvision.models.vgg16(pretrained=False)

# 使用预训练权重的VGG16模型
vgg16_true = torchvision.models.vgg16(pretrained=True)

print(vgg16_false)
print(vgg16_true)

在上述代码中,使用torchvision.models.vgg16来加载VGG16模型。通过pretrained参数,我们可以选择是否加载预训练的权重。vgg16_false代表一个不带预训练权重的VGG16模型,而vgg16_true代表一个带有预训练权重的模型。

二、修改现有网络模型

一旦加载了现有的网络模型,可以对其进行修改,以满足特定任务的需求。下面是如何修改VGG16模型的示例代码:

python 复制代码
import torchvision
from torch import nn
from torchvision.models import VGG16

# 加载带有预训练权重的VGG16模型
vgg16 = torchvision.models.vgg16(pretrained=True)

# 添加一个新的线性层,将输出从1000类修改为10类
vgg16.classifier.add_module('add_linear', nn.Linear(1000, 10))

# 修改VGG16模型的最后一个全连接层
vgg16.classifier[6] = nn.Linear(4096, 10)

print(vgg16)

在上述代码中,加载了一个带有预训练权重的VGG16模型,并通过add_module方法添加了一个新的线性层,将输出从1000类修改为10类。此外,还演示了如何通过修改模型的索引来改变VGG16模型的最后一个全连接层。

这种方法可以帮助您快速构建适用于特定任务的模型,而无需从头开始训练整个网络。

完整代码如下:

python 复制代码
import torchvision
from torch import nn
from torchvision.models import VGG16_Weights

# train_data = torchvision.datasets.ImageNet("D:\\Python_Project\\pytorch\\data_image_net",split="train",download=True,transform=torchvision.transforms.ToTensor())

# 错误原因:参数pretrained自0.13起已弃用,将在0.15后删除,要改用"weights"。
vgg16_false = torchvision.models.vgg16(weights=None)
vgg16_true = torchvision.models.vgg16(weights=VGG16_Weights.DEFAULT)

# print(vgg16_true)

# 要想用于 CIFAR10 数据集, 可以在网络下面多加一行,转成10分类的输出,这样输出的结果,跟下面的不一样,位置不一样
# vgg16_true.add_module('add_Linear',nn.Linear(1000,10))
# print(vgg16_true)

vgg16_true.classifier.add_module('add_linear',nn.Linear(1000,10))
# 层级不同
# 如何利用现有的网络,改变结构
print(vgg16_true)

# 上面是添加层,下面是如何修改VGG里面的层内容
print(vgg16_false)
vgg16_false.classifier[6] = nn.Linear(4096,10)  # 中括号里的内容,是网络输出结果自带的索引,套进这种格式,就可以直接修改那一层的内容
print(vgg16_false)

参考资料:

视频教程:PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】

相关推荐
weixin_45776000几秒前
GIOU (Generalized Intersection over Union) 详解
pytorch·python
Mr_Hu4041 分钟前
鸿蒙开发学习笔记-生命周期小记
笔记·学习·harmonyos·鸿蒙
糖葫芦君5 分钟前
OneRec - V2 lazy decoder为什么效率高
人工智能·深度学习·llm
楼田莉子8 分钟前
Linux学习:基础IO相关学习
linux·开发语言·c++·后端·学习
.小小陈.15 分钟前
C++初阶5:string类使用攻略
开发语言·c++·学习·算法
大雾的小屋16 分钟前
【1-1】基于深度学习的滚动轴承故障诊断系统:从数据处理到交互式界面全流程解析
人工智能·pytorch·深度学习·系统架构·人机交互·pyqt·用户界面
此剑之势丶愈斩愈烈20 分钟前
设计模式学习
学习·设计模式
神奇的代码在哪里22 分钟前
C++的演进与我的编程学习之旅:从底层基础到AI应用
c++·人工智能·python·学习·程序人生·个人开发
lanbo_ai25 分钟前
基于深度学习的宠物猫品种识别系统,resnet50,alexnet,mobilenet【pytorch框架,python代码】
人工智能·pytorch·python·深度学习·cnn
LDG_AGI30 分钟前
【推荐系统】深度学习训练框架(十五):特征工程——PySpark DataFrame数据处理核心指南
人工智能·深度学习