[量化投资-学习笔记006]Python+TDengine从零开始搭建量化分析平台-MACD

在上一章节介绍了 EMA 均线的计算,本节主要介绍均线的进化形态之一:MACD

MACD (Moving Average Convergence / Divergence) 指数平滑移动平均线。MACD 是通过计算不同时间的 EMA 的差值俩判断价格趋势。

MACD 包括 3 个值:

长短期 EMA 差值:DIF = EMA(close,12)-EMA(close,26) (计算 12 日和 26 日 EMA 均线差值)

信号线: DEA = EMA(DIF,9) (计算差值的 EMA 均线)

柱状图: OSC = DIF - DEA

通过以上公式,可以看出 MACD 可反应如下信息:

  1. DIF>0 价格上涨,DIF<0 价格下跌
  2. DEA>0 价格加速上涨,DEA<0 价格加速下跌
  3. OSC 绝对值越大,说明价格变化越剧烈

1. 从数据库获取收盘价

上一节,对数据进行了清洗,可以直接查询每天的收盘价,不用再使用 interval 聚合函数。

python 复制代码
st = '2022-06-01'
et = '2022-10-01'
sql = 'select tdate,close from trade_data_c.tdata where fcode="000001" and tdate>="'+st+'" and tdate<="'+et+'"'

rt = fun.request_post(tdurl,sql,username,password)

2. 使用 pandas 直接计算EMA

这里 MACD 的周期设置为(12,26,9)。

python 复制代码
df = request_get_d(rt)
df['DIF'] = pd.DataFrame.ewm(df['close'],span=12).mean() - pd.DataFrame.ewm(df['close'],span=26).mean()
df['DEA'] = pd.DataFrame.ewm(df['DIF'],span=9).mean()
df['OSC'] = df['DIF'] - df['DEA']

3. 绘制图形

python 复制代码
plt.title("MACD")
plt.plot(df['DIF'],'r',linewidth=1.0,label='DIF')
plt.plot(df['DEA'],'y',linewidth=1.0,label='DEA')
plt.bar(df.index,df['OSC']*3,label='OSC')
plt.legend()
plt.grid()
plt.show()

为了让图片更美观,将 OSC 进行了优化。

相关推荐
一只理智恩2 分钟前
AI 实战应用:从“搜索式问答“到“理解式助教“
人工智能·python·语言模型·golang
Katecat996634 分钟前
输液泵设备检测与识别基于改进YOLO11模型的实现详解_ETB
python
Sirius.z5 分钟前
第T7周:咖啡豆识别
python
山岚的运维笔记9 分钟前
SQL Server笔记 -- 第72章:隔离级别与锁定
数据库·笔记·后端·sql·microsoft·sqlserver
DeepModel27 分钟前
第15章 多模态学习
深度学习·学习·机器学习
不吃橘子的橘猫34 分钟前
《集成电路设计》复习资料2(设计基础与方法)
学习·算法·fpga开发·集成电路·仿真·半导体
yao12497364731 小时前
【无标题】
python·synergy·deskflow·键鼠共享·hyprland·niri
workflower1 小时前
原子需求的属性
python·测试用例·需求分析·软件需求
尘缘浮梦1 小时前
协程asyncio入门案例 2
开发语言·python
じ☆冷颜〃1 小时前
从确定性算子到随机生成元:谱范式的演进
经验分享·笔记·线性代数·矩阵·抽象代数