[量化投资-学习笔记006]Python+TDengine从零开始搭建量化分析平台-MACD

在上一章节介绍了 EMA 均线的计算,本节主要介绍均线的进化形态之一:MACD

MACD (Moving Average Convergence / Divergence) 指数平滑移动平均线。MACD 是通过计算不同时间的 EMA 的差值俩判断价格趋势。

MACD 包括 3 个值:

长短期 EMA 差值:DIF = EMA(close,12)-EMA(close,26) (计算 12 日和 26 日 EMA 均线差值)

信号线: DEA = EMA(DIF,9) (计算差值的 EMA 均线)

柱状图: OSC = DIF - DEA

通过以上公式,可以看出 MACD 可反应如下信息:

  1. DIF>0 价格上涨,DIF<0 价格下跌
  2. DEA>0 价格加速上涨,DEA<0 价格加速下跌
  3. OSC 绝对值越大,说明价格变化越剧烈

1. 从数据库获取收盘价

上一节,对数据进行了清洗,可以直接查询每天的收盘价,不用再使用 interval 聚合函数。

python 复制代码
st = '2022-06-01'
et = '2022-10-01'
sql = 'select tdate,close from trade_data_c.tdata where fcode="000001" and tdate>="'+st+'" and tdate<="'+et+'"'

rt = fun.request_post(tdurl,sql,username,password)

2. 使用 pandas 直接计算EMA

这里 MACD 的周期设置为(12,26,9)。

python 复制代码
df = request_get_d(rt)
df['DIF'] = pd.DataFrame.ewm(df['close'],span=12).mean() - pd.DataFrame.ewm(df['close'],span=26).mean()
df['DEA'] = pd.DataFrame.ewm(df['DIF'],span=9).mean()
df['OSC'] = df['DIF'] - df['DEA']

3. 绘制图形

python 复制代码
plt.title("MACD")
plt.plot(df['DIF'],'r',linewidth=1.0,label='DIF')
plt.plot(df['DEA'],'y',linewidth=1.0,label='DEA')
plt.bar(df.index,df['OSC']*3,label='OSC')
plt.legend()
plt.grid()
plt.show()

为了让图片更美观,将 OSC 进行了优化。

相关推荐
向量引擎小橙1 小时前
视觉艺术的“奇点”:深度拆解 Gemini-3-Pro-Image-Preview 绘画模型,看这只“香蕉”如何重塑 AI 创作逻辑!
人工智能·python·gpt·深度学习·llama
red_redemption1 小时前
自由学习记录(118)
学习
yaoxin5211231 小时前
324. Java Stream API - 实现 Collector 接口:自定义你的流式收集器
java·windows·python
独行soc1 小时前
2026年渗透测试面试题总结-24(题目+回答)
网络·python·安全·web安全·渗透测试·安全狮
SmartBrain2 小时前
Python 特性(第一部分):知识点讲解(含示例)
开发语言·人工智能·python·算法
Lun3866buzha2 小时前
基于YOLO11-C3k2-FFCM:跳甲虫害叶片智能检测与识别系统
python
小猪佩奇TONY2 小时前
OpenCL 学习(5)---- OpenCL 内核和内核参数
学习
01二进制代码漫游日记2 小时前
自定义类型:联合和枚举(一)
c语言·开发语言·学习·算法
Gaosiy2 小时前
技术细节-MNE读取neuroscan curry9版本cdt文件
python·脑机接口·脑电·mne
非凡ghost2 小时前
小X分身APP(手机分身类工具)
android·windows·学习·智能手机·软件需求