[量化投资-学习笔记006]Python+TDengine从零开始搭建量化分析平台-MACD

在上一章节介绍了 EMA 均线的计算,本节主要介绍均线的进化形态之一:MACD

MACD (Moving Average Convergence / Divergence) 指数平滑移动平均线。MACD 是通过计算不同时间的 EMA 的差值俩判断价格趋势。

MACD 包括 3 个值:

长短期 EMA 差值:DIF = EMA(close,12)-EMA(close,26) (计算 12 日和 26 日 EMA 均线差值)

信号线: DEA = EMA(DIF,9) (计算差值的 EMA 均线)

柱状图: OSC = DIF - DEA

通过以上公式,可以看出 MACD 可反应如下信息:

  1. DIF>0 价格上涨,DIF<0 价格下跌
  2. DEA>0 价格加速上涨,DEA<0 价格加速下跌
  3. OSC 绝对值越大,说明价格变化越剧烈

1. 从数据库获取收盘价

上一节,对数据进行了清洗,可以直接查询每天的收盘价,不用再使用 interval 聚合函数。

python 复制代码
st = '2022-06-01'
et = '2022-10-01'
sql = 'select tdate,close from trade_data_c.tdata where fcode="000001" and tdate>="'+st+'" and tdate<="'+et+'"'

rt = fun.request_post(tdurl,sql,username,password)

2. 使用 pandas 直接计算EMA

这里 MACD 的周期设置为(12,26,9)。

python 复制代码
df = request_get_d(rt)
df['DIF'] = pd.DataFrame.ewm(df['close'],span=12).mean() - pd.DataFrame.ewm(df['close'],span=26).mean()
df['DEA'] = pd.DataFrame.ewm(df['DIF'],span=9).mean()
df['OSC'] = df['DIF'] - df['DEA']

3. 绘制图形

python 复制代码
plt.title("MACD")
plt.plot(df['DIF'],'r',linewidth=1.0,label='DIF')
plt.plot(df['DEA'],'y',linewidth=1.0,label='DEA')
plt.bar(df.index,df['OSC']*3,label='OSC')
plt.legend()
plt.grid()
plt.show()

为了让图片更美观,将 OSC 进行了优化。

相关推荐
小彭律师34 分钟前
人脸识别门禁系统技术文档
python
ll7788111 小时前
C++学习之路,从0到精通的征途:继承
开发语言·数据结构·c++·学习·算法
张小九992 小时前
PyTorch的dataloader制作自定义数据集
人工智能·pytorch·python
zstar-_2 小时前
FreeTex v0.2.0:功能升级/支持Mac
人工智能·python·macos·llm
LuckyLay2 小时前
React百日学习计划——Deepseek版
前端·学习·react.js
苏生要努力3 小时前
第九届御网杯网络安全大赛初赛WP
linux·python·网络安全
于壮士hoho3 小时前
DeepSeek | AI需求分析
人工智能·python·ai·需求分析·dash
安和昂3 小时前
【iOS】SDWebImage源码学习
学习·ios
蒙奇D索大3 小时前
【人工智能】自然语言编程革命:腾讯云CodeBuddy实战5步搭建客户管理系统,效率飙升90%
人工智能·python·django·云计算·腾讯云
AndrewHZ3 小时前
【Python生活】如何构建一个跌倒检测的算法?
python·算法·生活·可视化分析·陀螺仪·加速度计·跌倒检测