[量化投资-学习笔记006]Python+TDengine从零开始搭建量化分析平台-MACD

在上一章节介绍了 EMA 均线的计算,本节主要介绍均线的进化形态之一:MACD

MACD (Moving Average Convergence / Divergence) 指数平滑移动平均线。MACD 是通过计算不同时间的 EMA 的差值俩判断价格趋势。

MACD 包括 3 个值:

长短期 EMA 差值:DIF = EMA(close,12)-EMA(close,26) (计算 12 日和 26 日 EMA 均线差值)

信号线: DEA = EMA(DIF,9) (计算差值的 EMA 均线)

柱状图: OSC = DIF - DEA

通过以上公式,可以看出 MACD 可反应如下信息:

  1. DIF>0 价格上涨,DIF<0 价格下跌
  2. DEA>0 价格加速上涨,DEA<0 价格加速下跌
  3. OSC 绝对值越大,说明价格变化越剧烈

1. 从数据库获取收盘价

上一节,对数据进行了清洗,可以直接查询每天的收盘价,不用再使用 interval 聚合函数。

python 复制代码
st = '2022-06-01'
et = '2022-10-01'
sql = 'select tdate,close from trade_data_c.tdata where fcode="000001" and tdate>="'+st+'" and tdate<="'+et+'"'

rt = fun.request_post(tdurl,sql,username,password)

2. 使用 pandas 直接计算EMA

这里 MACD 的周期设置为(12,26,9)。

python 复制代码
df = request_get_d(rt)
df['DIF'] = pd.DataFrame.ewm(df['close'],span=12).mean() - pd.DataFrame.ewm(df['close'],span=26).mean()
df['DEA'] = pd.DataFrame.ewm(df['DIF'],span=9).mean()
df['OSC'] = df['DIF'] - df['DEA']

3. 绘制图形

python 复制代码
plt.title("MACD")
plt.plot(df['DIF'],'r',linewidth=1.0,label='DIF')
plt.plot(df['DEA'],'y',linewidth=1.0,label='DEA')
plt.bar(df.index,df['OSC']*3,label='OSC')
plt.legend()
plt.grid()
plt.show()

为了让图片更美观,将 OSC 进行了优化。

相关推荐
朝九晚五ฺ27 分钟前
【Linux探索学习】第十四弹——进程优先级:深入理解操作系统中的进程优先级
linux·运维·学习
小喵要摸鱼29 分钟前
Python 神经网络项目常用语法
python
一念之坤2 小时前
零基础学Python之数据结构 -- 01篇
数据结构·python
wusong9992 小时前
mongoDB回顾笔记(一)
数据库·笔记·mongodb
猫爪笔记2 小时前
前端:HTML (学习笔记)【1】
前端·笔记·学习·html
Resurgence032 小时前
【计组笔记】习题
笔记
wxl7812272 小时前
如何使用本地大模型做数据分析
python·数据挖掘·数据分析·代码解释器
NoneCoder2 小时前
Python入门(12)--数据处理
开发语言·python
pq113_62 小时前
ftdi_sio应用学习笔记 3 - GPIO
笔记·学习·ftdi_sio
澄澈i3 小时前
设计模式学习[8]---原型模式
学习·设计模式·原型模式