[量化投资-学习笔记006]Python+TDengine从零开始搭建量化分析平台-MACD

在上一章节介绍了 EMA 均线的计算,本节主要介绍均线的进化形态之一:MACD

MACD (Moving Average Convergence / Divergence) 指数平滑移动平均线。MACD 是通过计算不同时间的 EMA 的差值俩判断价格趋势。

MACD 包括 3 个值:

长短期 EMA 差值:DIF = EMA(close,12)-EMA(close,26) (计算 12 日和 26 日 EMA 均线差值)

信号线: DEA = EMA(DIF,9) (计算差值的 EMA 均线)

柱状图: OSC = DIF - DEA

通过以上公式,可以看出 MACD 可反应如下信息:

  1. DIF>0 价格上涨,DIF<0 价格下跌
  2. DEA>0 价格加速上涨,DEA<0 价格加速下跌
  3. OSC 绝对值越大,说明价格变化越剧烈

1. 从数据库获取收盘价

上一节,对数据进行了清洗,可以直接查询每天的收盘价,不用再使用 interval 聚合函数。

python 复制代码
st = '2022-06-01'
et = '2022-10-01'
sql = 'select tdate,close from trade_data_c.tdata where fcode="000001" and tdate>="'+st+'" and tdate<="'+et+'"'

rt = fun.request_post(tdurl,sql,username,password)

2. 使用 pandas 直接计算EMA

这里 MACD 的周期设置为(12,26,9)。

python 复制代码
df = request_get_d(rt)
df['DIF'] = pd.DataFrame.ewm(df['close'],span=12).mean() - pd.DataFrame.ewm(df['close'],span=26).mean()
df['DEA'] = pd.DataFrame.ewm(df['DIF'],span=9).mean()
df['OSC'] = df['DIF'] - df['DEA']

3. 绘制图形

python 复制代码
plt.title("MACD")
plt.plot(df['DIF'],'r',linewidth=1.0,label='DIF')
plt.plot(df['DEA'],'y',linewidth=1.0,label='DEA')
plt.bar(df.index,df['OSC']*3,label='OSC')
plt.legend()
plt.grid()
plt.show()

为了让图片更美观,将 OSC 进行了优化。

相关推荐
伯明翰java9 小时前
Redis学习笔记-List列表(2)
redis·笔记·学习
云帆小二9 小时前
从开发语言出发如何选择学习考试系统
开发语言·学习
许泽宇的技术分享9 小时前
当AI学会“说人话“:Azure语音合成技术的魔法世界
后端·python·flask
光泽雨9 小时前
python学习基础
开发语言·数据库·python
Elias不吃糖9 小时前
总结我的小项目里现在用到的Redis
c++·redis·学习
BullSmall9 小时前
《道德经》第六十三章
学习
裤裤兔10 小时前
python爬取pdf文件并保存至本地
chrome·爬虫·python·pdf·网络爬虫
Solyn_HAN10 小时前
非编码 RNA(ceRNA/lncRNA/circRNA)分析完整流程:从数据下载到功能验证(含代码模板)
python·bash·生物信息学·r
CesareCheung10 小时前
JMeter 进行 WebSocket 接口压测
python·websocket·jmeter
beijingliushao10 小时前
95-Python爬虫-正则表达式
爬虫·python·正则表达式