[量化投资-学习笔记006]Python+TDengine从零开始搭建量化分析平台-MACD

在上一章节介绍了 EMA 均线的计算,本节主要介绍均线的进化形态之一:MACD

MACD (Moving Average Convergence / Divergence) 指数平滑移动平均线。MACD 是通过计算不同时间的 EMA 的差值俩判断价格趋势。

MACD 包括 3 个值:

长短期 EMA 差值:DIF = EMA(close,12)-EMA(close,26) (计算 12 日和 26 日 EMA 均线差值)

信号线: DEA = EMA(DIF,9) (计算差值的 EMA 均线)

柱状图: OSC = DIF - DEA

通过以上公式,可以看出 MACD 可反应如下信息:

  1. DIF>0 价格上涨,DIF<0 价格下跌
  2. DEA>0 价格加速上涨,DEA<0 价格加速下跌
  3. OSC 绝对值越大,说明价格变化越剧烈

1. 从数据库获取收盘价

上一节,对数据进行了清洗,可以直接查询每天的收盘价,不用再使用 interval 聚合函数。

python 复制代码
st = '2022-06-01'
et = '2022-10-01'
sql = 'select tdate,close from trade_data_c.tdata where fcode="000001" and tdate>="'+st+'" and tdate<="'+et+'"'

rt = fun.request_post(tdurl,sql,username,password)

2. 使用 pandas 直接计算EMA

这里 MACD 的周期设置为(12,26,9)。

python 复制代码
df = request_get_d(rt)
df['DIF'] = pd.DataFrame.ewm(df['close'],span=12).mean() - pd.DataFrame.ewm(df['close'],span=26).mean()
df['DEA'] = pd.DataFrame.ewm(df['DIF'],span=9).mean()
df['OSC'] = df['DIF'] - df['DEA']

3. 绘制图形

python 复制代码
plt.title("MACD")
plt.plot(df['DIF'],'r',linewidth=1.0,label='DIF')
plt.plot(df['DEA'],'y',linewidth=1.0,label='DEA')
plt.bar(df.index,df['OSC']*3,label='OSC')
plt.legend()
plt.grid()
plt.show()

为了让图片更美观,将 OSC 进行了优化。

相关推荐
躺平大鹅2 分钟前
5个实用Python小脚本,新手也能轻松实现(附完整代码)
python
三块可乐两块冰3 分钟前
【第二十九周】机器学习笔记三十
笔记
yukai080087 分钟前
【最后203篇系列】039 JWT使用
python
好好学习天天向上~~10 分钟前
6_Linux学习总结_自动化构建
linux·学习·自动化
独好紫罗兰33 分钟前
对python的再认识-基于数据结构进行-a006-元组-拓展
开发语言·数据结构·python
Dfreedom.35 分钟前
图像直方图完全解析:从原理到实战应用
图像处理·python·opencv·直方图·直方图均衡化
听麟44 分钟前
HarmonyOS 6.0+ 跨端智慧政务服务平台开发实战:多端协同办理与电子证照管理落地
笔记·华为·wpf·音视频·harmonyos·政务
铉铉这波能秀1 小时前
LeetCode Hot100数据结构背景知识之集合(Set)Python2026新版
数据结构·python·算法·leetcode·哈希算法
非凡ghost1 小时前
PowerDirector安卓版(威力导演安卓版)
android·windows·学习·软件需求
怒放吧德德1 小时前
Python3基础:基础实战巩固,从“会用”到“活用”
后端·python