[量化投资-学习笔记006]Python+TDengine从零开始搭建量化分析平台-MACD

在上一章节介绍了 EMA 均线的计算,本节主要介绍均线的进化形态之一:MACD

MACD (Moving Average Convergence / Divergence) 指数平滑移动平均线。MACD 是通过计算不同时间的 EMA 的差值俩判断价格趋势。

MACD 包括 3 个值:

长短期 EMA 差值:DIF = EMA(close,12)-EMA(close,26) (计算 12 日和 26 日 EMA 均线差值)

信号线: DEA = EMA(DIF,9) (计算差值的 EMA 均线)

柱状图: OSC = DIF - DEA

通过以上公式,可以看出 MACD 可反应如下信息:

  1. DIF>0 价格上涨,DIF<0 价格下跌
  2. DEA>0 价格加速上涨,DEA<0 价格加速下跌
  3. OSC 绝对值越大,说明价格变化越剧烈

1. 从数据库获取收盘价

上一节,对数据进行了清洗,可以直接查询每天的收盘价,不用再使用 interval 聚合函数。

python 复制代码
st = '2022-06-01'
et = '2022-10-01'
sql = 'select tdate,close from trade_data_c.tdata where fcode="000001" and tdate>="'+st+'" and tdate<="'+et+'"'

rt = fun.request_post(tdurl,sql,username,password)

2. 使用 pandas 直接计算EMA

这里 MACD 的周期设置为(12,26,9)。

python 复制代码
df = request_get_d(rt)
df['DIF'] = pd.DataFrame.ewm(df['close'],span=12).mean() - pd.DataFrame.ewm(df['close'],span=26).mean()
df['DEA'] = pd.DataFrame.ewm(df['DIF'],span=9).mean()
df['OSC'] = df['DIF'] - df['DEA']

3. 绘制图形

python 复制代码
plt.title("MACD")
plt.plot(df['DIF'],'r',linewidth=1.0,label='DIF')
plt.plot(df['DEA'],'y',linewidth=1.0,label='DEA')
plt.bar(df.index,df['OSC']*3,label='OSC')
plt.legend()
plt.grid()
plt.show()

为了让图片更美观,将 OSC 进行了优化。

相关推荐
hello_ world.2 分钟前
k8s笔记04-常用部署命令
笔记·容器·kubernetes
工作碎碎念4 分钟前
pandas
python
SatoshiGogo31 分钟前
《李沐读论文》系列笔记:论文读写与研究方法【更新中】
笔记
IT199537 分钟前
Wireshark笔记-DHCP流程与数据包解析
笔记·测试工具·wireshark
子朔不言38 分钟前
[MH22D3开发笔记]2. SPI,QSPI速度究竟能跑多快,双屏系统的理想选择
笔记·mh22d3·新龙微·兆讯·双屏
被遗忘的旋律.40 分钟前
Linux驱动开发笔记(七)——并发与竞争(上)——原子操作
linux·驱动开发·笔记
A7bert7771 小时前
【YOLOv5部署至RK3588】模型训练→转换RKNN→开发板部署
c++·人工智能·python·深度学习·yolo·目标检测·机器学习
鲸鱼24011 小时前
无监督学习中的经典聚类算法——K-Means笔记
笔记
冷月半明1 小时前
时间序列篇:Prophet负责优雅,LightGBM负责杀疯
python·算法
教练我想打篮球_基本功重塑版1 小时前
L angChain 加载大模型
python·langchain