Spark 新特性+核心回顾

Spark 新特性+核心

本文来自 B站 黑马程序员 - Spark教程 :原地址

1. 掌握Spark的Shuffle流程

1.1 Spark Shuffle

Map和Reduce

在Shuffle过程中,提供数据的称之为Map端(Shuffle Write)接收数据的称之为Reduce端(Shuffle Read)

在Spark的两个阶段中,总是前一个阶段产生 批Map提供数据,下一个阶产生一批Reduce接收数据

1.2 Hash Shuffle Manager

Spark 提供2种Shuffle管理器:

  • HashShuffleManager
  • SortShuffleManager

优化后的HashShuffleManager基本和未优化的一致,不同点在于

  1. 在一个Executor内,不同Task是共享Buffer缓冲区
  2. 这样减少了缓冲区乃至写入磁盘文件的数量,提高性能

1.3 Sort Shuffle Manager

SortShuffleManager的运行机制主要分成两种,一种是普通运行机制,另一种是bypass运行机制。

总结

  1. SortShuffle对比HashShuffle可以减少很多的磁盘文件,以节省网络IO的开销
  2. SortShuffle主要是对磁盘文件进行合并来进行文件数量的减少,同时两类Shuffle都需要经过内存缓冲区溢写磁盘的场景,所以可以得知,尽管Spark是内存迭代计算框架,但是内存迭代主要在窄依赖中,在宽依赖(Shuffle)中磁盘交互还是一个无可避免的情况。所以,我们要尽量减少Shuffle的出现,不要进行无意义的Shuffle计算

2. 掌握Spark3.0新特性

  1. AQE的开启通过:Spark.sql.adaptive.enabled设置为true开启,触发后极大提升SparkSQL计算性能
  2. 动态分区裁剪可以让我们更好的优化运行时分区内数据的量级。通过动态的谓词下推来获取传统静态谓词下推无法获得的更高过滤属性,减少操作的分区数据量以提高性能
  3. 新版Koalas类库可以让我们写Pandas API(Koalas提供)然后将它们运行在分布式的Spark环境上,Pandas开发者也能快速上手Spark
    将它们运行在分布式的Spark环境上,Pandas开发者也能快速上手Spark
相关推荐
2501_943695334 分钟前
高职大数据与会计专业,考CDA证后能转纯数据分析岗吗?
大数据·数据挖掘·数据分析
实时数据21 分钟前
通过大数据的深度分析与精准营销策略,企业能够有效实现精准引流
大数据
禁默44 分钟前
打破集群通信“内存墙”:手把手教你用 CANN SHMEM 重构 AIGC 分布式算子
分布式·重构·aigc
子榆.1 小时前
CANN 性能分析与调优实战:使用 msprof 定位瓶颈,榨干硬件每一分算力
大数据·网络·人工智能
新芒1 小时前
暖通行业两位数下滑,未来靠什么赢?
大数据·人工智能
忆~遂愿2 小时前
CANN ATVOSS 算子库深度解析:基于 Ascend C 模板的 Vector 算子子程序化建模与融合优化机制
大数据·人工智能
惊讶的猫2 小时前
rabbitmq初步介绍
分布式·rabbitmq
小镇敲码人3 小时前
华为CANN框架中HCCL仓库的全面解析:分布式通信的引擎
分布式·华为
艾莉丝努力练剑3 小时前
【Linux:文件】Ext系列文件系统(初阶)
大数据·linux·运维·服务器·c++·人工智能·算法
User_芊芊君子3 小时前
【分布式训练】CANN SHMEM跨设备内存通信库:构建高效多机多卡训练的关键组件
分布式·深度学习·神经网络·wpf