Spark 新特性+核心回顾

Spark 新特性+核心

本文来自 B站 黑马程序员 - Spark教程 :原地址

1. 掌握Spark的Shuffle流程

1.1 Spark Shuffle

Map和Reduce

在Shuffle过程中,提供数据的称之为Map端(Shuffle Write)接收数据的称之为Reduce端(Shuffle Read)

在Spark的两个阶段中,总是前一个阶段产生 批Map提供数据,下一个阶产生一批Reduce接收数据

1.2 Hash Shuffle Manager

Spark 提供2种Shuffle管理器:

  • HashShuffleManager
  • SortShuffleManager

优化后的HashShuffleManager基本和未优化的一致,不同点在于

  1. 在一个Executor内,不同Task是共享Buffer缓冲区
  2. 这样减少了缓冲区乃至写入磁盘文件的数量,提高性能

1.3 Sort Shuffle Manager

SortShuffleManager的运行机制主要分成两种,一种是普通运行机制,另一种是bypass运行机制。

总结

  1. SortShuffle对比HashShuffle可以减少很多的磁盘文件,以节省网络IO的开销
  2. SortShuffle主要是对磁盘文件进行合并来进行文件数量的减少,同时两类Shuffle都需要经过内存缓冲区溢写磁盘的场景,所以可以得知,尽管Spark是内存迭代计算框架,但是内存迭代主要在窄依赖中,在宽依赖(Shuffle)中磁盘交互还是一个无可避免的情况。所以,我们要尽量减少Shuffle的出现,不要进行无意义的Shuffle计算

2. 掌握Spark3.0新特性

  1. AQE的开启通过:Spark.sql.adaptive.enabled设置为true开启,触发后极大提升SparkSQL计算性能
  2. 动态分区裁剪可以让我们更好的优化运行时分区内数据的量级。通过动态的谓词下推来获取传统静态谓词下推无法获得的更高过滤属性,减少操作的分区数据量以提高性能
  3. 新版Koalas类库可以让我们写Pandas API(Koalas提供)然后将它们运行在分布式的Spark环境上,Pandas开发者也能快速上手Spark
    将它们运行在分布式的Spark环境上,Pandas开发者也能快速上手Spark
相关推荐
盟接之桥1 小时前
盟接之桥说制造:“盟接之桥”为何成了“断桥”?——制造企业困局突围的三重思考
大数据·人工智能·物联网·产品运营·制造
五度易链-区域产业数字化管理平台2 小时前
如何构建高质量产业数据信息库?五度易链的“八大核心库”与数据治理实践
大数据·人工智能
Elastic 中国社区官方博客2 小时前
用 Elasticsearch 构建一个 ChatGPT connector 来查询 GitHub issues
大数据·人工智能·elasticsearch·搜索引擎·chatgpt·github·全文检索
哲霖软件2 小时前
设备自动化行业ERP选型
大数据
武子康2 小时前
大数据-172 Elasticsearch 索引操作与 IK 分词器落地实战:7.3/8.15 全流程速查
大数据·后端·elasticsearch
问道飞鱼2 小时前
【分布式知识】Redis-Shake 容器云部署完整指南
redis·分布式·redis-shake
学术小白人3 小时前
【落幕通知】2025年能源互联网与电气工程国际学术会议(EIEE 2025)在大连圆满闭幕
大数据·人工智能·机器人·能源·信号处理·rdlink研发家
物流可信数据空间3 小时前
专家解读 | 提升数据流通安全治理能力 促进数据流通开发利用【可信数据空间】
大数据·人工智能·安全
Acrelhuang3 小时前
直击新能源电能质量痛点:安科瑞 APView500 在线监测装置应用方案
大数据·运维·开发语言·人工智能·物联网
龙亘川3 小时前
2025 年中国养老机器人行业全景分析:技术演进、市场格局与商业化路径
大数据·人工智能·机器人