杂记(3):在Pytorch中如何操作将数据集分为训练集和测试集?

在Pytorch中如何操作将数据集分为训练集和测试集?

  • [0. 前言](#0. 前言)
  • [1. 手动切分](#1. 手动切分)
  • [2. train_test_split方法](#2. train_test_split方法)
  • [3. Pytorch自带方法](#3. Pytorch自带方法)
  • [4. 总结](#4. 总结)

0. 前言

数据集需要分为训练集和测试集! 其中,训练集单纯用来训练,优化模型参数;测试集单纯用来测试,评价模型效果。然而,如何将数据集分为训练集和测试集这个简单的问题网上的回答也是五花八门,明明有简单的方法,当然不想用麻烦的方法啦!因此,这里做一下简单记录!

1. 手动切分

这里所言的手动切分指的是:将数据集前面一部分分为训练集,后面一部分分为测试集。具体代码而言如下:

python 复制代码
# 假设所有数据极为数组a 标签为b
train_X = a[:int(0.8*len(a))]
test_X = a[int(0.8*len(a)):]

train_Y = b[:int(0.8*len(a))]
test_Y = b[int(0.8*len(a)):]

train_dataset= Data.TensorDataset(torch.FloatTensor(train_X ), torch.FloatTensor(train_Y ))
test_dataset= Data.TensorDataset(torch.FloatTensor(test_X), torch.FloatTensor(test_Y))

trainLoader = DataLoader(dataset = train_dataset,batch_size = 18,num_workers = 0,shuffle = True)
testLoader = DataLoader(dataset = test_dataset,batch_size = 18,num_workers = 0,shuffle = True)

2. train_test_split方法

使用机器学习中的 train_test_split 方法!在机器学习中切分数据集一般都用该方法,但是在Pytorch中还是需要进行转换后方可输入模型。

python 复制代码
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(a, b, test_size=0.33, random_state=42)

train_dataset= Data.TensorDataset(torch.FloatTensor(X_train), torch.FloatTensor(y_train))
test_dataset= Data.TensorDataset(torch.FloatTensor(X_test), torch.FloatTensor(y_test ))

trainLoader = DataLoader(dataset = train_dataset,batch_size = 18,num_workers = 0,shuffle = True)
testLoader = DataLoader(dataset = test_dataset,batch_size = 18,num_workers = 0,shuffle = True)

3. Pytorch自带方法

Pytorch中自带的有将数据集随机切分的方法 ( torch.utils.data.random_split ),不需要额外的操作!!!!具体代码如下:

python 复制代码
import torch.utils.data as Data

dataset = Data.TensorDataset(torch.FloatTensor(a), torch.FloatTensor(b))
batch_size = 16
# 将数据集分为训练集和测试集
trainLoader, testLodaer = Data.random_split(dataset,
                                            lengths=[int(0.9 * len(dataset)),
                                            len(dataset) - int(0.9 * len(dataset))],
                                            generator=torch.Generator().manual_seed(0))

4. 总结

到此,使用 在Pytorch中如何操作将数据集分为训练集和测试集已经介绍完毕了!!! 如果有什么问题欢迎在评论区提出,对于共性问题可能会后续添加到文章介绍中。如果存在没有提及的方法也可以在评论区提出,后续会对其进行添加!!!!

如果觉得这篇文章对你有用,记得点赞、收藏并分享给你的小伙伴们哦😄。

相关推荐
985小水博一枚呀2 分钟前
【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer
龙哥说跨境3 分钟前
如何利用指纹浏览器爬虫绕过Cloudflare的防护?
服务器·网络·python·网络爬虫
AltmanChan3 分钟前
大语言模型安全威胁
人工智能·安全·语言模型
985小水博一枚呀7 分钟前
【深度学习滑坡制图|论文解读2】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer·迁移学习
数据与后端架构提升之路16 分钟前
从神经元到神经网络:深度学习的进化之旅
人工智能·神经网络·学习
小白学大数据19 分钟前
正则表达式在Kotlin中的应用:提取图片链接
开发语言·python·selenium·正则表达式·kotlin
flashman91120 分钟前
python在word中插入图片
python·microsoft·自动化·word
爱技术的小伙子22 分钟前
【ChatGPT】如何通过逐步提示提高ChatGPT的细节描写
人工智能·chatgpt
菜鸟的人工智能之路23 分钟前
桑基图在医学数据分析中的更复杂应用示例
python·数据分析·健康医疗
懒大王爱吃狼2 小时前
Python教程:python枚举类定义和使用
开发语言·前端·javascript·python·python基础·python编程·python书籍