Flink -- 并行度

1、并行度:

对于一个Flink任务是有Source、Transformation和Sink等任务组成,一个任务由多个并行实例来执行,一个任务的并行实例数目被称为该任务的并行度。

2、TaskManager和Solt

Flink是一个分布式流处理框架,它基于TaskManager和Slot来实现任务的执行。TaskManager是Flink中负责运行任务的工作进程,而Slot是TaskManager中可用的资源。

TaskManager在Flink集群中分布式运行,每个TaskManager可以运行多个Slot。Slot是TaskManager中的资源分配单位,每个Slot可以运行一个Flink任务。TaskManager会根据需要动态分配Slot,以满足任务执行的需求。

3、共享资源槽:

1、 对于一个Task solt负责执行一个task这种部署方式来说,产生的问题是资源的浪费,此时Flink就有就共享资源槽。

2、共享资源槽:Flink并不是将task合并,而是上游的task和下游的task可以共享一个槽位,所以Flink需要使用多少资源和task的数量没有关系,而是和节点的最大并行度有关系,因为有几个并行度就需要几个槽位。

4、并行度的设置的方式:

1、env.setParallelism(2),设置并行度为2(Execution Environment Level(执行环境级别))

2、可以在提交任务的时候指定并行度,通过-p来指定( Client Level(客户端级别))

复制代码
flink run-application -t yarn-application  -p 2 -c flink.core.Demo1WordCount flink-1.0.jar

3、可以对每一个算子都单独的设置并行度(Operator Level(算子级别))

4、System Level 一般不使用

复制代码
在系统级可以通过设置flink-conf.yaml文件中的parallelism.default属性来指定所有执行环境的默认并行度。

三者的优先级是:3---1---2
flink任务需要的资源和task数量无关,和并行相关,一个并行度需要一个资源(slot)
并行度大小的设置与数据的吞吐量有关
相关推荐
鸭鸭鸭进京赶烤2 小时前
大学专业科普 | 云计算、大数据
大数据·云计算
G皮T5 小时前
【Elasticsearch】自定义评分检索
大数据·elasticsearch·搜索引擎·查询·检索·自定义评分·_score
搞笑的秀儿8 小时前
信息新技术
大数据·人工智能·物联网·云计算·区块链
SelectDB9 小时前
SelectDB 在 AWS Graviton ARM 架构下相比 x86 实现 36% 性价比提升
大数据·架构·aws
二二孚日9 小时前
自用华为ICT云赛道Big Data第五章知识点-Flume海量日志聚合
大数据·华为
二二孚日11 小时前
自用华为ICT云赛道Big Data第四章知识点-Flink流批一体分布式实时处理引擎
大数据·华为
xufwind12 小时前
spark standlone 集群离线安装
大数据·分布式·spark
AI数据皮皮侠13 小时前
中国区域10m空间分辨率楼高数据集(全国/分省/分市/免费数据)
大数据·人工智能·机器学习·分类·业界资讯
昱禹14 小时前
Flutter 3.29+使用isar构建失败
大数据·flutter
DeepSeek大模型官方教程14 小时前
NLP之文本纠错开源大模型:兼看语音大模型总结
大数据·人工智能·ai·自然语言处理·大模型·产品经理·大模型学习