数据结构与算法—插入排序&选择排序

目录

一、排序的概念

二、插入排序

1、直接插入排序

直接插入排序的特性总结:

2、希尔排序

希尔排序的特性总结:

三、选择排序

1、直接选择排序

时间复杂度

2、堆排序---排升序(建大堆)

向下调整函数

堆排序函数

代码完整版:

头文件

函数文件

测试文件


一、排序的概念

排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。
内部排序:数据元素全部放在内存中的排序。
外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序。

二、插入排序

比如,在实际中我们玩扑克牌时,就用了插入排序的思想

1、直接插入排序

直接插入排序是一种简单的排序算法,它的基本思想是将一个记录插入到已经排序好的有序表中,从而得到一个新的、记录数增加1的有序表。这个算法适用于少量数据的排序,是稳定的排序方法,即相等的元素的顺序不会改变。

直接插入排序的算法过程如下:

  1. 从第一个元素开始,该元素可以认为已经被排序;
  2. 取出下一个元素,在已经排序的元素序列中从后向前扫描;
  3. 如果该元素(已排序)大于新元素,将该元素移到下一位置;
  4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
  5. 将新元素插入到该位置后;
  6. 重复步骤2~5。

如果我们将这个过程比作扑克牌的排序,每次我们都是从牌堆中拿出一张牌,然后将它插入到左手中正确的位置,最终左手中的牌都是排序好的。

我们来看一下代码的运行过程:

cpp 复制代码
void InsertSort(int* a, int n)
{
	for (int i = 0; i < n - 1; i++) {
		int end = i;
		int tmp = a[i + 1];
		while (end >= 0) {
			if (a[end] > tmp) {
				a[end + 1] = a[end];
				end--;
			}
			else {
				break;
			}
		}
		a[end + 1] = tmp;
	}
}
  • 函数参数:指针a接收数组,n接收数组元素个数。
  • 首先,外层循环从第一个元素开始遍历到倒数第二个元素,因为在内层循环中需要比较当前元素和前一个元素的大小,所以最后一个元素不需要再比较。
  • 在外层循环中,我们将当前元素的下一个元素作为待插入元素,将当前元素的下标保存在变量end中,这个变量表示当前元素在已排序部分中的位置。
  • 接下来while循环中,我们在已排序部分从后往前遍历,比较当前元素和已排序部分中的元素大小,如果当前元素小于已排序部分中的元素,则将已排序部分中的元素后移一位,直到找到当前元素的正确位置。
  • 最后,我们将待插入元素插入到正确的位置,即end+1的位置。
  • 内层循环结束后,当前元素已经被插入到了正确的位置,我们继续外层循环,处理下一个元素,直到所有元素都被插入到正确的位置。

直接插入排序的特性总结:

  1. 元素集合越接近有序,直接插入排序算法的时间效率越高
  2. 时间复杂度:O(N^2)
  3. 空间复杂度:O(1),它是一种稳定的排序算法
  4. 稳定性:稳定

2、希尔排序

希尔排序(Shell Sort)是一种改进的插入排序算法,它的基本思想是将待排序的序列分成若干个子序列,对每个子序列进行插入排序,然后再将整个序列进行一次插入排序。通过这种方式,可以使得序列中较小的元素尽可能地快速地移动到前面,从而减少了插入排序的比较次数和移动次数,提高了排序的效率。

希尔排序的算法过程如下:

  1. 选择一个增量序列t1,t2,...,tk,其中ti>tj,tk=1;
  2. 按增量序列个数k,对序列进行k趟排序;
  3. 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m的子序列,分别对每个子序列进行插入排序;
  4. 将各个子序列中的排序结果合并成一个序列。

代码如下:

cpp 复制代码
void ShellSort(int* a, int n)
{
	//1、gap >  1 预排序
	//2、gap == 1 直接插入排序
	int gap = n;
	while (gap > 1) {
		gap = gap / 3 + 1;// +1可以保证最后一次一定是1
		for (int i = 0; i < n - gap; i++) {
			int end = i;
			int tmp = a[end + gap];
			while (end >= 0) {
				if (a[end] > tmp) {
					a[end + gap] = a[end];
					end -= gap;
				}
				else {
					break;
				}
			}
			a[end + gap] = tmp;
		}
	}
}
  • 首先,我们选择一个增量gap=n,然后将序列分成若干个子序列,对每个子序列进行插入排序。

  • 在这个实现中,我们使用了一个while循环来计算增量gap,每次将gap除以3并加1,保证gap最小为1,此时进行直接插入排序。

  • 在外层while循环中,我们将序列分成若干个子序列,每个子序列的长度为gap。然后,我们对每个子序列进行插入排序,将子序列中的元素插入到已排序部分的正确位置。

  • 在内层循环中,我们使用了一个变量end来表示当前元素的下标,每次将end减去gap,直到找到当前元素的正确位置。然后,我们将待插入元素插入到正确的位置,即end+gap的位置。

  • 内层循环结束后,当前子序列已经排好序了,我们继续外层while循环,处理下一个子序列,直到所有子序列都被排好序了。

以数组 a = [9, 8, 7, 6, 5, 4, 3, 3, 2, 1, 0],长度 n = 11为例,演示排序过程

图中颜色相同的值为当前<间距gap>下的子序列,从前往后依次比较每个子序列(也就是相距 gap 个位置的值的大小)。

希尔排序的特性总结:

  1. 希尔排序是对直接插入排序的优化。
  2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。
  3. 希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好些书中给出的希尔排序的时间复杂度都不固定,但我们只需记住结论:O(N^ 1.3),复杂的推导和计算过程不需要了解。

三、选择排序

1、直接选择排序

直接选择排序通过每一轮的比较,找到最大值和最小值,将最大值的节点跟右边交换,最小值节点跟左边交换,达到排升序的效果。

我们先看代码,然后通过一个例子就能明白了。

cpp 复制代码
void Swap(int* p1, int* p2)
{
	int tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}

void SelectSort(int* a, int n)
{
	int begin = 0, end = n - 1;
	while (begin < end)
	{
		int maxi = begin, mini = begin;
		for (int i = begin; i <= end; i++)
		{
			if (a[i] > a[maxi])
			{
				maxi = i;
			}

			if (a[i] < a[mini])
			{
				mini = i;
			}
		}

		Swap(&a[begin], &a[mini]);
		// 如果maxi和begin重叠,修正一下即可
		if (begin == maxi)
		{
			maxi = mini;
		}

		Swap(&a[end], &a[maxi]);

		++begin;
		--end;
	}
}
  • 代码中的变量begin和end分别表示当前未排序的元素范围的起始和结束位置。
  • 在while循环中,每次从begin到end的范围内找到最大和最小的元素,分别用maxi和mini记录它们的下标。
  • 然后将mini所指向的元素与begin所指向的元素交换位置,将maxi所指向的元素与end所指向的元素交换位置。
  • 如果maxi和begin重叠,说明mini所指向的元素是当前未排序元素中最大的,需要将maxi更新为mini。
  • 最后,begin指针向后移动一位,end指针向前移动一位,继续进行下一轮排序。

我们来用一个简单的例子演示一下这个选择排序算法的过程。
假设我们有一个数组`a`,它的元素为:[5, 3, 8, 6, 4, 2],我们要对它进行排序。

首先,begin指向第一个元素,end指向最后一个元素:

cpp 复制代码
begin = 0
end = 5

接下来,我们进入主循环,因为`begin`小于`end`,所以我们需要继续排序。在第一轮排序中,我们需要找到未排序部分的最大值和最小值。
首先,我们将`maxi`和`mini`都初始化为`begin`,也就是第一个元素的索引。然后,我们遍历未排序部分的元素,找到最大值和最小值的索引。在这个例子中,最大值的索引是2,最小值的索引是5。

cpp 复制代码
maxi = 2
mini = 5

接下来,我们将未排序部分的最小值交换到开始位置,将未排序部分的最大值交换到结束位置。这时,数组的状态变为:[2, 3, 4, 6, 8, 5]
由于我们已经将当前范围的最大值和最小值放到了正确的位置,所以我们将`begin`向后移动一位,将`end`向前移动一位,继续进行下一轮排序。此时,`begin`指向第二个元素,`end`指向倒数第二个元素:

cpp 复制代码
begin = 1
end = 4

在第二轮排序中,我们需要找到未排序部分的最大值和最小值。这时,最大值的索引是3,最小值的索引是1。

cpp 复制代码
maxi = 3
mini = 1

接下来,我们将未排序部分的最小值交换到开始位置,将未排序部分的最大值交换到结束位置。这时,数组的状态变为:[2, 3, 4, 5, 6, 8],所有元素都排序完成,排序结束。

时间复杂度

每一轮比较都需要遍历数组,查找最大最小值,第一轮遍历N个数据,第二轮是N-2个数据,第三轮N-4 ...,遍历次数为:N+N-2+N-4+...+1,一个等差数列求和,所以总的时间复杂度为O(N^2)

2、堆排序---排升序(建大堆)

向下调整函数

cpp 复制代码
void Swap(int* p1, int* p2)
{
	int tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}

void AdjustDown(int* a, int n, int parent)
{
	int child = parent * 2 + 1;

	while (child < n){
		if (child + 1 < n && a[child + 1] > a[child])
			++child;

		if (a[child] > a[parent]){
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}

		else
			break;
	}
}
  • 通过传入参数获取到当前的左子节点的位置。
  • 当child位置小于数组元素个数时进行判断。
  • 进入循环,首先判断检查右子节点是否存在 并且比左子节点的值 ,如果是,将 child 更新为右子节点的索引,以确保选择更小的子节点进行比较。
  • 比较选定的子节点的值与父节点的值,如果子节点的值大于父节点的值,就交换它们。
  • 更新parent为新的子节点位置,更新child为新的左子节点位置,然后继续比较和交换,直到不再需要交换为止。
  • 如果当前子节点不大于当前父节点则停止循环。

堆排序函数

cpp 复制代码
// 排升序
void HeapSort(int* a, int n)
{
	// 建大堆
	for (int i = (n-1-1)/2; i >= 0; --i)
	{
		AdjustDown(a, n, i);
	}

	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		--end;
	}
}
  1. 在HeapSort函数中,第一个循环调用了AdjustDown函数,将待排序数组构建成了一个大堆。但是,这个大堆并不是完全有序的,只是满足了大堆的性质,即每个节点的值都大于或等于其左右子节点的值。因此,需要进行第二个while循环,将大堆中的元素依次取出,交换堆顶元素和数组末尾元素,并重新调整大堆,直到整个数组有序。
  2. 第二个while循环中,将堆顶元素与数组末尾元素交换,然后将剩余元素重新调整为大堆。这样,每次交换后,数组末尾的元素就是当前大堆中的大值,而剩余元素仍然满足大堆的性质。重复以上步骤,直到整个数组有序。

代码完整版:

头文件

cpp 复制代码
#include<stdio.h>
#include<stdlib.h>
#include<stdbool.h>

void PrintArray(int* a, int n);
void InsertSort(int* a, int n);
void ShellSort(int* a, int n);
void SelectSort(int* a, int n);
void HeapSort(int* a, int n);

函数文件

cpp 复制代码
#include "sort.h"

void PrintArray(int* a, int n)
{
	for (int i = 0; i < n; i++) {
		printf("%d ", a[i]);
	}
	printf("\n");
}

void InsertSort(int* a, int n)
{
	for (int i = 0; i < n - 1; i++) {
		int end = i;
		int tmp = a[i + 1];
		while (end >= 0) {
			if (a[end] > tmp) {
				a[end + 1] = a[end];
				end--;
			}
			else {
				break;
			}
		}
		a[end + 1] = tmp;
	}
}

void ShellSort(int* a, int n)
{
	//1、gap >  1 预排序
	//2、gap == 1 直接插入排序
	int gap = n;
	while (gap > 1) {
		gap = gap / 3 + 1;// +1可以保证最后一次一定是1
		for (int i = 0; i < n - gap; i++) {
			int end = i;
			int tmp = a[end + gap];
			while (end >= 0) {
				if (a[end] > tmp) {
					a[end + gap] = a[end];
					end -= gap;
				}
				else {
					break;
				}
			}
			a[end + gap] = tmp;
		}
	}
}

void Swap(int* p1, int* p2)
{
	int tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}

void SelectSort(int* a, int n)
{
	int begin = 0, end = n - 1;
	while (begin < end)
	{
		int maxi = begin, mini = begin;
		for (int i = begin; i <= end; i++)
		{
			if (a[i] > a[maxi])
			{
				maxi = i;
			}

			if (a[i] < a[mini])
			{
				mini = i;
			}
		}

		Swap(&a[begin], &a[mini]);
		// 如果maxi和begin重叠,修正一下即可
		if (begin == maxi)
		{
			maxi = mini;
		}

		Swap(&a[end], &a[maxi]);

		++begin;
		--end;
	}
}

void AdjustDown(int* a, int n, int parent)
{
	int child = parent * 2 + 1;
	while (child < n) {
		if (child + 1 < n && a[child + 1] > a[child]) {
			child++;
		}
		if (a[child] > a[parent]) {
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else {
			break;
		}
	}
}

void HeapSort(int* a, int n)
{
	for (int i = (n - 1 - 1) / 2; i >= 0; --i) {
		AdjustDown(a, n, i);
	}
	int end = n - 1;
	while (end > 0) {
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		end--;
	}
}

测试文件

cpp 复制代码
#include"Sort.h"
#include<time.h>

void TestInsertSort()
{
	//int a[] = { 4,7,1,9,3,4,5,8,3,2 };
	int a[] = { 4,7,1,9,3,6,5,8,3,2,0 };
	PrintArray(a, sizeof(a) / sizeof(int));
	InsertSort(a, sizeof(a) / sizeof(int));
	PrintArray(a, sizeof(a) / sizeof(int));
}

void TestSelectSort()
{
	//int a[] = { 4,7,1,9,3,6,5,8,3,2,0 };
	int a[] = { 9,7,1,3,3,0,5,8,3,2,3 };
	PrintArray(a, sizeof(a) / sizeof(int));
	SelectSort(a, sizeof(a) / sizeof(int));
	PrintArray(a, sizeof(a) / sizeof(int));
}

void TestHeapSort()
{
	int a[] = { 4,7,1,9,3,6,5,8,3,2,0 };
	PrintArray(a, sizeof(a) / sizeof(int));
	HeapSort(a, sizeof(a) / sizeof(int));
	PrintArray(a, sizeof(a) / sizeof(int));
}

void TestOP()
{
	srand(time(0));
	const int N = 1000000;//运行时间较长可自行更改大小
	int* a1 = (int*)malloc(sizeof(int) * N);
	int* a2 = (int*)malloc(sizeof(int) * N);
	int* a3 = (int*)malloc(sizeof(int) * N);
	int* a4 = (int*)malloc(sizeof(int) * N);
	int* a5 = (int*)malloc(sizeof(int) * N);
	int* a6 = (int*)malloc(sizeof(int) * N);
	int* a7 = (int*)malloc(sizeof(int) * N);


	for (int i = 0; i < N; ++i)
	{
		a1[i] = rand();
		a2[i] = a1[i];
		a3[i] = a1[i];
		a4[i] = a1[i];
		a5[i] = a1[i];
		a6[i] = a1[i];
		a7[i] = a1[i];
	}

	int begin1 = clock();
	InsertSort(a1, N);
	int end1 = clock();

	int begin2 = clock();
	ShellSort(a2, N);
	int end2 = clock();

	int begin3 = clock();
	SelectSort(a3, N);
	int end3 = clock();

	int begin4 = clock();
	HeapSort(a4, N);
	int end4 = clock();

	printf("InsertSort:%d\n", end1 - begin1);
	printf("ShellSort:%d\n",  end2 - begin2);
	printf("SelcetSort:%d\n", end3 - begin3);
	printf("HeapSort:%d\n",   end4 - begin4);

	free(a1);
	free(a2);
	free(a3);
	free(a4);
	free(a5);
	free(a6);
	free(a7);
}

int main()
{
	//TestInsertSort();
	//TestShellSort();
	//TestSelectSort();
	//TestHeapSort();

	TestOP();

	return 0;
}
相关推荐
yuanManGan1 小时前
数据结构漫游记:静态链表的实现(CPP)
数据结构·链表
火星机器人life2 小时前
基于ceres优化的3d激光雷达开源算法
算法·3d
虽千万人 吾往矣2 小时前
golang LeetCode 热题 100(动态规划)-更新中
算法·leetcode·动态规划
arnold663 小时前
华为OD E卷(100分)34-转盘寿司
算法·华为od
ZZTC3 小时前
Floyd算法及其扩展应用
算法
lshzdq4 小时前
【机器人】机械臂轨迹和转矩控制对比
人工智能·算法·机器人
2401_858286115 小时前
115.【C语言】数据结构之排序(希尔排序)
c语言·开发语言·数据结构·算法·排序算法
猫猫的小茶馆5 小时前
【数据结构】数据结构整体大纲
linux·数据结构·算法·ubuntu·嵌入式软件
u0107735145 小时前
【字符串】-Lc5-最长回文子串(中心扩展法)
java·算法
帅逼码农5 小时前
K-均值聚类算法
算法·均值算法·聚类