区间调度问题及贪心算法证明

1.问题及答案

问题:数轴上有n个区间,选出最多的区间,使得这些区间不互相重叠。

算法:

将所有区间按右端点坐标从小到大排序,顺序处理每个区间。如果它与当前已选的所有区间都没有重叠,则选择该区间,否则不选。

java 复制代码
    @Test
    public void intervalSchedule() {
        int[][] array = new int[][]{{1, 2}, {3, 4}, {5, 6}, {1, 5}, {2, 3}};
        Collections.sort(Arrays.asList(array), Comparator.comparingInt(o -> o[1]));
        int count = 1;
        int yRight = array[0][1];
        for (int i = 1; i < array.length; ++i) {
            if (array[i][0] >= yRight) {
                ++count;
                yRight = array[i][1];
            }
        }
        System.out.println("不重叠子区间的最大数量为 = " + count);
    }

2.贪心算法证明

参考链接:https://blog.csdn.net/luoweifu/article/details/18195607

证明:

显然,该算法最后选出的区间不互相重叠,下面证明所选出区间的数量是最多的。设fi为该算法所接受的第i个区间的右端点坐标,gi为某最优解中的第i个区间的右端点坐标。

命题1.1 当i >= 1时,该算法所接受的第i个区间的右端点坐标fi <= 某最优解中的第i个区间的右端点坐标gi

该命题可以运用数学归纳法来证明。对于i=1,命题显然为真,因为算法第一个选择的区间拥有最小右端点坐标。令i>1,假定论断对i-1为真,即fi-1<=gi-1。则最优解的第i个可选区间所组成的集合包含于执行该算法时第i个可选区间所组成的集合;而当算法选择第i个区间时,选的是在可选区间中右端点坐标最小的一个,所以有fi<=gi。证毕。

设该算法选出了k个区间,而最优解选出了m个区间。

命题1.2 最优解选出的区间数量m = 该算法选出的区间数量k

假设m>k,根据命题1.1,有fk<=gk。由于m>k,必然存在某区间,在gk之后开始,故也在fk之后开始。而该算法一定不会在选了第k个区间后停止,还会选择更多的区间,产生矛盾。所以m<=k,又因为m是最优解选出区间个数,所以m=k。

综上所述,算法选出的区间是最优解。

相关推荐
超的小宝贝12 分钟前
数据结构算法(C语言)
c语言·数据结构·算法
木子.李3476 小时前
排序算法总结(C++)
c++·算法·排序算法
闪电麦坤957 小时前
数据结构:递归的种类(Types of Recursion)
数据结构·算法
Gyoku Mint8 小时前
机器学习×第二卷:概念下篇——她不再只是模仿,而是开始决定怎么靠近你
人工智能·python·算法·机器学习·pandas·ai编程·matplotlib
纪元A梦8 小时前
分布式拜占庭容错算法——PBFT算法深度解析
java·分布式·算法
px不是xp8 小时前
山东大学算法设计与分析复习笔记
笔记·算法·贪心算法·动态规划·图搜索算法
枫景Maple9 小时前
LeetCode 2297. 跳跃游戏 VIII(中等)
算法·leetcode
鑫鑫向栄9 小时前
[蓝桥杯]修改数组
数据结构·c++·算法·蓝桥杯·动态规划
鑫鑫向栄9 小时前
[蓝桥杯]带分数
数据结构·c++·算法·职场和发展·蓝桥杯