尚硅谷大数据项目《在线教育之实时数仓》笔记006

视频地址:尚硅谷大数据项目《在线教育之实时数仓》_哔哩哔哩_bilibili

目录

[第9章 数仓开发之DWD层](#第9章 数仓开发之DWD层)

P041

P042

P043

P044

P045

P046

P047

P048

P049

P050

P051

P052


第9章 数仓开发之DWD层

P041

9.3 流量域用户跳出事务事实表

P042

DwdTrafficUserJumpDetail

// TODO 1 创建环境设置状态后端

// TODO 2 从kafka的page主题读取数据

// TODO 3 过滤加转换数据

// TODO 4 添加水位线

// TODO 5 按照mid分组

P043

java 复制代码
package com.atguigu.edu.realtime.app.dwd.log;

import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import com.atguigu.edu.realtime.util.EnvUtil;
import com.atguigu.edu.realtime.util.KafkaUtil;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.cep.CEP;
import org.apache.flink.cep.PatternFlatSelectFunction;
import org.apache.flink.cep.PatternFlatTimeoutFunction;
import org.apache.flink.cep.PatternStream;
import org.apache.flink.cep.pattern.Pattern;
import org.apache.flink.cep.pattern.conditions.IterativeCondition;
import org.apache.flink.streaming.api.datastream.*;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;
import org.apache.flink.util.OutputTag;

import java.util.List;
import java.util.Map;

/**
 * @author yhm
 * @create 2023-04-21 17:54
 */
public class DwdTrafficUserJumpDetail {
    public static void main(String[] args) throws Exception {
        // TODO 1 创建环境设置状态后端
        StreamExecutionEnvironment env = EnvUtil.getExecutionEnvironment(4);

        // TODO 2 从kafka的page主题读取数据
        String topicName = "dwd_traffic_page_log";
        DataStreamSource<String> logDS = env.fromSource(KafkaUtil.getKafkaConsumer(topicName, "dwd_traffic_user_jump_detail"), WatermarkStrategy.noWatermarks(), "user_jump_source");

        // 测试数据
        DataStream<String> kafkaDS = env
                .fromElements(
                        "{\"common\":{\"mid\":\"101\"},\"page\":{\"page_id\":\"home\"},\"ts\":10000} ",
                        "{\"common\":{\"mid\":\"102\"},\"page\":{\"page_id\":\"home\"},\"ts\":12000}",
                        "{\"common\":{\"mid\":\"102\"},\"page\":{\"page_id\":\"good_list\"},\"ts\":15000} ",
                        "{\"common\":{\"mid\":\"102\"},\"page\":{\"page_id\":\"good_list\",\"last_page_id\":" +
                                "\"detail\"},\"ts\":30000} "
                );

        // TODO 3 过滤加转换数据
        SingleOutputStreamOperator<JSONObject> jsonObjStream = kafkaDS.flatMap(new FlatMapFunction<String, JSONObject>() {
            @Override
            public void flatMap(String value, Collector<JSONObject> out) throws Exception {
                try {
                    JSONObject jsonObject = JSON.parseObject(value);
                    out.collect(jsonObject);
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        });

        // TODO 4 添加水位线
        SingleOutputStreamOperator<JSONObject> withWatermarkStream = jsonObjStream.assignTimestampsAndWatermarks(WatermarkStrategy.<JSONObject>forMonotonousTimestamps()
                .withTimestampAssigner(new SerializableTimestampAssigner<JSONObject>() {
                    @Override
                    public long extractTimestamp(JSONObject element, long recordTimestamp) {
                        return element.getLong("ts");
                    }
                }));

        // TODO 5 按照mid分组
        KeyedStream<JSONObject, String> keyedStream = withWatermarkStream.keyBy(new KeySelector<JSONObject, String>() {
            @Override
            public String getKey(JSONObject jsonObject) throws Exception {
                return jsonObject.getJSONObject("common").getString("mid");
            }
        });

        // TODO 6 定义cep匹配规则
        Pattern<JSONObject, JSONObject> pattern = Pattern.<JSONObject>begin("first").where(new IterativeCondition<JSONObject>() {
            @Override
            public boolean filter(JSONObject jsonObject, Context<JSONObject> ctx) throws Exception {
                // 一个会话的开头   ->   last_page_id 为空
                String lastPageId = jsonObject.getJSONObject("page").getString("last_page_id");
                return lastPageId == null;
            }
        }).next("second").where(new IterativeCondition<JSONObject>() {
            @Override
            public boolean filter(JSONObject jsonObject, Context<JSONObject> ctx) throws Exception {
                // 满足匹配的条件
                // 紧密相连,又一个会话的开头
                String lastPageId = jsonObject.getJSONObject("page").getString("last_page_id");
                return lastPageId == null;
            }
        }).within(Time.seconds(10L));

        // TODO 7 将CEP作用到流上
        PatternStream<JSONObject> patternStream = CEP.pattern(keyedStream, pattern);

        // TODO 8 提取匹配数据和超时数据
        OutputTag<String> timeoutTag = new OutputTag<String>("timeoutTag") {
        };
        SingleOutputStreamOperator<String> flatSelectStream = patternStream.flatSelect(timeoutTag, new PatternFlatTimeoutFunction<JSONObject, String>() {
            @Override
            public void timeout(Map<String, List<JSONObject>> pattern, long timeoutTimestamp, Collector<String> out) throws Exception {
                JSONObject first = pattern.get("first").get(0);
                out.collect(first.toJSONString());
            }
        }, new PatternFlatSelectFunction<JSONObject, String>() {
            @Override
            public void flatSelect(Map<String, List<JSONObject>> pattern, Collector<String> out) throws Exception {
                JSONObject first = pattern.get("first").get(0);
                out.collect(first.toJSONString());
            }
        });

        SideOutputDataStream<String> timeoutStream = flatSelectStream.getSideOutput(timeoutTag);

        // TODO 9 合并数据写出到kafka
        DataStream<String> unionStream = flatSelectStream.union(timeoutStream);
        String targetTopic = "dwd_traffic_user_jump_detail";
        unionStream.sinkTo(KafkaUtil.getKafkaProducer(targetTopic, "user_jump_trans"));

        // TODO 10 执行任务
        env.execute();
    }
}

P044

超时数据

P045

9.4 学习域播放事务事实表

P046

++DwdLearnPlay、DwdLearnPlayBean++

//TODO 1 创建环境设置状态后端

//TODO 2 读取kafka播放日志数据

//TODO 3 清洗转换

//TODO 4 添加水位线

P047

java 复制代码
package com.atguigu.edu.realtime.app.dwd.log;

import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import com.atguigu.edu.realtime.bean.DwdLearnPlayBean;
import com.atguigu.edu.realtime.util.EnvUtil;
import com.atguigu.edu.realtime.util.KafkaUtil;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.EventTimeSessionWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;

import java.time.Duration;

/**
 * @author yhm
 * @create 2023-04-23 14:21
 */
public class DwdLearnPlay {
    public static void main(String[] args) throws Exception {
        //TODO 1 创建环境设置状态后端
        StreamExecutionEnvironment env = EnvUtil.getExecutionEnvironment(1);

        //TODO 2 读取kafka播放日志数据
        String topicName = "dwd_traffic_play_pre_process";
        String groupId = "dwd_learn_play";
        DataStreamSource<String> playSource = env.fromSource(KafkaUtil.getKafkaConsumer(topicName, groupId), WatermarkStrategy.noWatermarks(), "learn_play");

        //TODO 3 清洗转换
        SingleOutputStreamOperator<DwdLearnPlayBean> learnBeanStream = playSource.flatMap(new FlatMapFunction<String, DwdLearnPlayBean>() {
            @Override
            public void flatMap(String value, Collector<DwdLearnPlayBean> out) throws Exception {
                try {
                    JSONObject jsonObject = JSON.parseObject(value);
                    JSONObject common = jsonObject.getJSONObject("common");
                    JSONObject appVideo = jsonObject.getJSONObject("appVideo");
                    Long ts = jsonObject.getLong("ts");
                    DwdLearnPlayBean learnPlayBean = DwdLearnPlayBean.builder()
                            .provinceId(common.getString("ar"))
                            .brand(common.getString("ba"))
                            .channel(common.getString("ch"))
                            .isNew(common.getString("is_new"))
                            .model(common.getString("md"))
                            .machineId(common.getString("mid"))
                            .operatingSystem(common.getString("os"))
                            .sourceId(common.getString("sc"))
                            .sessionId(common.getString("sid"))
                            .userId(common.getString("uid"))
                            .versionCode(common.getString("vc"))
                            .playSec(appVideo.getInteger("play_sec"))
                            .videoId(appVideo.getString("video_id"))
                            .positionSec(appVideo.getInteger("position_sec"))
                            .ts(ts)
                            .build();
                    out.collect(learnPlayBean);
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        });

        //TODO 4 添加水位线
        SingleOutputStreamOperator<DwdLearnPlayBean> withWatermarkStream = learnBeanStream.assignTimestampsAndWatermarks(WatermarkStrategy.<DwdLearnPlayBean>forBoundedOutOfOrderness(Duration.ofSeconds(5)).withTimestampAssigner(
                new SerializableTimestampAssigner<DwdLearnPlayBean>() {
                    @Override
                    public long extractTimestamp(DwdLearnPlayBean element, long recordTimestamp) {
                        return element.getTs();
                    }
                }
        ));

        //TODO 5 按照会话id分组
        KeyedStream<DwdLearnPlayBean, String> keyedStream = withWatermarkStream.keyBy(new KeySelector<DwdLearnPlayBean, String>() {
            @Override
            public String getKey(DwdLearnPlayBean value) throws Exception {
                return value.getSessionId();
            }
        });

        //TODO 6 聚合统计
        WindowedStream<DwdLearnPlayBean, String, TimeWindow> windowStream = keyedStream.window(EventTimeSessionWindows.withGap(Time.seconds(3L)));
        SingleOutputStreamOperator<DwdLearnPlayBean> reducedStream = windowStream.reduce(
                new ReduceFunction<DwdLearnPlayBean>() {
                    @Override
                    public DwdLearnPlayBean reduce(DwdLearnPlayBean value1, DwdLearnPlayBean value2) throws Exception {
                        value1.setPlaySec(value1.getPlaySec() + value2.getPlaySec());
                        if (value2.getTs() > value1.getTs()) {
                            value1.setPositionSec(value2.getPositionSec());
                        }
                        return value1;
                    }
                }, new ProcessWindowFunction<DwdLearnPlayBean, DwdLearnPlayBean, String, TimeWindow>() {
                    @Override
                    public void process(String key, Context context, Iterable<DwdLearnPlayBean> elements, Collector<DwdLearnPlayBean> out) throws Exception {
                        for (DwdLearnPlayBean element : elements) {
                            out.collect(element);
                        }
                    }
                }
        );

        //TODO 7 转换结构
        SingleOutputStreamOperator<String> jsonStrStream = reducedStream.map(JSON::toJSONString);

        //TODO 8 输出到kafka主题Kafka dwd_learn_play
        String targetTopic = "dwd_learn_play";
        jsonStrStream.sinkTo(KafkaUtil.getKafkaProducer(targetTopic,"learn_pay_trans"));

        //TODO 9 执行任务
        env.execute();
    }
}

P048

先启动消费者DwdLearnPlay,再mock数据。

kafka没有消费到数据,DwdLearnPlay:将并发改为1(TODO 1)、改时间(TODO 6,时间改为3s),窗口和并发调小一些。

同一个人看的同一个视频,时间不一样,看的位置也不一样。

bash 复制代码
[atguigu@node001 ~]$ kafka-console-consumer.sh --bootstrap-server node001:9092 --topic dwd_learn_play
bash 复制代码
[atguigu@node001 ~]$ cd /opt/module/data_mocker/01-onlineEducation/
[atguigu@node001 01-onlineEducation]$ ll
总用量 30460
-rw-rw-r-- 1 atguigu atguigu     2223 9月  19 10:43 application.yml
-rw-rw-r-- 1 atguigu atguigu  4057995 7月  25 10:28 edu0222.sql
-rw-rw-r-- 1 atguigu atguigu 27112074 7月  25 10:28 edu2021-mock-2022-06-18.jar
drwxrwxr-x 2 atguigu atguigu     4096 11月  2 11:13 log
-rw-rw-r-- 1 atguigu atguigu     1156 7月  25 10:44 logback.xml
-rw-rw-r-- 1 atguigu atguigu      633 7月  25 10:45 path.json
[atguigu@node001 01-onlineEducation]$ java -jar edu2021-mock-2022-06-18.jar 
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/opt/module/data_mocker/01-onlineEducation/edu2021-mock-2022-06-18.jar!/BOOT-INF/lib/logback-classic-1.2.3.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/opt/module/data_mocker/01-onlineEducation/edu2021-mock-2022-06-18.jar!/BOOT-INF/lib/slf4j-log4j12-1.7.7.jar!/org/slf4j/impl/StaticLoggerBinder.class]
bash 复制代码
{"brand":"Xiaomi","channel":"xiaomi","isNew":"0","machineId":"mid_293","model":"Xiaomi Mix2 ","operatingSystem":"Android 10.0","playSec":30,"positionSec":690,"provinceId":"18","sessionId":"a1fb6d22-f8ef-40e6-89c2-262cd5a351be","sourceId":"1","ts":1645460612085,"userId":"46","versionCode":"v2.1.134","videoId":"108"}
{"brand":"Xiaomi","channel":"xiaomi","isNew":"0","machineId":"mid_293","model":"Xiaomi Mix2 ","operatingSystem":"Android 10.0","playSec":30,"positionSec":720,"provinceId":"18","sessionId":"a1fb6d22-f8ef-40e6-89c2-262cd5a351be","sourceId":"1","ts":1645460642085,"userId":"46","versionCode":"v2.1.134","videoId":"108"}
{
    "brand":"Xiaomi",
    "channel":"xiaomi",
    "isNew":"0",
    "machineId":"mid_293",
    "model":"Xiaomi Mix2 ",
    "operatingSystem":"Android 10.0",
    "playSec":30,
    "positionSec":690,
    "provinceId":"18",
    "sessionId":"a1fb6d22-f8ef-40e6-89c2-262cd5a351be",
    "sourceId":"1",
    "ts":1645460612085,
    "userId":"46",
    "versionCode":"v2.1.134",
    "videoId":"108"
}

P049

++9.5 用户域用户登录事务事实表++

++9.5.1 主要任务++

读取页面日志数据,筛选用户登录记录,写入 Kafka 用户登录主题。

++9.5.2 思路分析++

++9.5.3 图解++

P050

DwdUserUserLogin

//TODO 1 创建环境设置状态后端

//TODO 2 读取kafka的dwd_traffic_page_log主题数据

//TODO 3 过滤及转换

//TODO 4 添加水位线

//TODO 5 按照会话id分组

P051

DwdUserUserLogin、DwdUserUserLoginBean

java 复制代码
package com.atguigu.edu.realtime.app.dwd.log;

import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import com.atguigu.edu.realtime.bean.DwdUserUserLoginBean;
import com.atguigu.edu.realtime.util.DateFormatUtil;
import com.atguigu.edu.realtime.util.EnvUtil;
import com.atguigu.edu.realtime.util.KafkaUtil;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.state.StateTtlConfig;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.common.time.Time;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.KeyedProcessFunction;
import org.apache.flink.util.Collector;

import java.time.Duration;

/**
 * @author yhm
 * @create 2023-04-23 16:02
 */
public class DwdUserUserLogin {
    public static void main(String[] args) throws Exception {
        //TODO 1 创建环境设置状态后端
        StreamExecutionEnvironment env = EnvUtil.getExecutionEnvironment(1);

        //TODO 2 读取kafka的dwd_traffic_page_log主题数据
        String topicName = "dwd_traffic_page_log";
        String groupId = "dwd_user_user_login";
        DataStreamSource<String> pageStream = env.fromSource(KafkaUtil.getKafkaConsumer(topicName, groupId), WatermarkStrategy.noWatermarks(), "user_login");

        //TODO 3 过滤及转换
        SingleOutputStreamOperator<JSONObject> jsonObjStream = pageStream.flatMap(new FlatMapFunction<String, JSONObject>() {
            @Override
            public void flatMap(String value, Collector<JSONObject> out) throws Exception {
                try {
                    JSONObject jsonObject = JSON.parseObject(value);
                    if (jsonObject.getJSONObject("common").getString("uid") != null) {
                        out.collect(jsonObject);
                    }
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        });

        //TODO 4 添加水位线
        SingleOutputStreamOperator<JSONObject> withWaterMarkStream = jsonObjStream.assignTimestampsAndWatermarks(WatermarkStrategy.<JSONObject>forBoundedOutOfOrderness(Duration.ofSeconds(5L)).withTimestampAssigner(new SerializableTimestampAssigner<JSONObject>() {
            @Override
            public long extractTimestamp(JSONObject element, long recordTimestamp) {
                return element.getLong("ts");
            }
        }));

        //TODO 5 按照会话id分组
        KeyedStream<JSONObject, String> keyedStream = withWaterMarkStream.keyBy(new KeySelector<JSONObject, String>() {
            @Override
            public String getKey(JSONObject value) throws Exception {
                return value.getJSONObject("common").getString("mid");
            }
        });

        //TODO 6 使用状态找出每个会话第一条数据
        SingleOutputStreamOperator<JSONObject> firstStream = keyedStream.process(new KeyedProcessFunction<String, JSONObject, JSONObject>() {
            ValueState<JSONObject> firstLoginDtState;

            @Override
            public void open(Configuration parameters) throws Exception {
                super.open(parameters);
                ValueStateDescriptor<JSONObject> valueStateDescriptor = new ValueStateDescriptor<>("first_login_dt", JSONObject.class);
                // 添加状态存活时间
                valueStateDescriptor.enableTimeToLive(StateTtlConfig
                        .newBuilder(Time.days(1L))
                        .setUpdateType(StateTtlConfig.UpdateType.OnCreateAndWrite)
                        .build());
                firstLoginDtState = getRuntimeContext().getState(valueStateDescriptor);
            }

            @Override
            public void processElement(JSONObject jsonObject, Context ctx, Collector<JSONObject> out) throws Exception {
                // 处理数据
                // 获取状态
                JSONObject firstLoginDt = firstLoginDtState.value();
                Long ts = jsonObject.getLong("ts");
                if (firstLoginDt == null) {
                    firstLoginDtState.update(jsonObject);
                    // 第一条数据到的时候开启定时器
                    ctx.timerService().registerEventTimeTimer(ts + 10 * 1000L);
                } else {
                    Long lastTs = firstLoginDt.getLong("ts");
                    if (ts < lastTs) {
                        firstLoginDtState.update(jsonObject);
                    }
                }
            }

            @Override
            public void onTimer(long timestamp, OnTimerContext ctx, Collector<JSONObject> out) throws Exception {
                super.onTimer(timestamp, ctx, out);
                out.collect(firstLoginDtState.value());
            }
        });

        //TODO 7 转换结构
        SingleOutputStreamOperator<String> mapStream = firstStream.map(new MapFunction<JSONObject, String>() {
            @Override
            public String map(JSONObject jsonObj) throws Exception {
                JSONObject common = jsonObj.getJSONObject("common");
                Long ts = jsonObj.getLong("ts");
                String loginTime = DateFormatUtil.toYmdHms(ts);
                String dateId = loginTime.substring(0, 10);

                DwdUserUserLoginBean dwdUserUserLoginBean = DwdUserUserLoginBean.builder()
                        .userId(common.getString("uid"))
                        .dateId(dateId)
                        .loginTime(loginTime)
                        .channel(common.getString("ch"))
                        .provinceId(common.getString("ar"))
                        .versionCode(common.getString("vc"))
                        .midId(common.getString("mid"))
                        .brand(common.getString("ba"))
                        .model(common.getString("md"))
                        .sourceId(common.getString("sc"))
                        .operatingSystem(common.getString("os"))
                        .ts(ts)
                        .build();
                return JSON.toJSONString(dwdUserUserLoginBean);
            }
        });

        //TODO 8 输出数据
        String sinkTopic = "dwd_user_user_login";
        mapStream.sinkTo(KafkaUtil.getKafkaProducer(sinkTopic, "user_login_trans"));

        //TODO 9 执行任务
        env.execute();
    }
}

P052

bash 复制代码
[atguigu@node001 ~]$ kafka-console-consumer.sh --bootstrap-server node001:9092 --topic dwd_user_user_login
bash 复制代码
[atguigu@node001 ~]$ cd /opt/module/data_mocker/01-onlineEducation/
[atguigu@node001 01-onlineEducation]$ java -jar edu2021-mock-2022-06-18.jar 
相关推荐
PersistJiao17 分钟前
在 Spark RDD 中,sortBy 和 top 算子的各自适用场景
大数据·spark·top·sortby
2301_8112743129 分钟前
大数据基于Spring Boot的化妆品推荐系统的设计与实现
大数据·spring boot·后端
Yz987636 分钟前
hive的存储格式
大数据·数据库·数据仓库·hive·hadoop·数据库开发
青云交37 分钟前
大数据新视界 -- 大数据大厂之 Hive 数据导入:多源数据集成的策略与实战(上)(3/ 30)
大数据·数据清洗·电商数据·数据整合·hive 数据导入·多源数据·影视娱乐数据
武子康40 分钟前
大数据-230 离线数仓 - ODS层的构建 Hive处理 UDF 与 SerDe 处理 与 当前总结
java·大数据·数据仓库·hive·hadoop·sql·hdfs
武子康42 分钟前
大数据-231 离线数仓 - DWS 层、ADS 层的创建 Hive 执行脚本
java·大数据·数据仓库·hive·hadoop·mysql
运维&陈同学1 小时前
【zookeeper01】消息队列与微服务之zookeeper工作原理
运维·分布式·微服务·zookeeper·云原生·架构·消息队列
时差9531 小时前
Flink Standalone集群模式安装部署
大数据·分布式·flink·部署
锵锵锵锵~蒋1 小时前
实时数据开发 | 怎么通俗理解Flink容错机制,提到的checkpoint、barrier、Savepoint、sink都是什么
大数据·数据仓库·flink·实时数据开发
二进制_博客1 小时前
Flink学习连载文章4-flink中的各种转换操作
大数据·学习·flink