LeetCode----72. 编辑距离

 题目

给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

复制代码
插入一个字符
删除一个字符
替换一个字符

示例 1:

输入:word1 = "horse", word2 = "ros"

输出:3

解释:

horse -> rorse (将 'h' 替换为 'r')

rorse -> rose (删除 'r')

rose -> ros (删除 'e')

示例 2:

输入:word1 = "intention", word2 = "execution"

输出:5

解释:

intention -> inention (删除 't')

inention -> enention (将 'i' 替换为 'e')

enention -> exention (将 'n' 替换为 'x')

exention -> exection (将 'n' 替换为 'c')

exection -> execution (插入 'u')

提示:

复制代码
0 <= word1.length, word2.length <= 500
word1 和 word2 由小写英文字母组成

 解答

这是一个经典的编辑距离(Levenshtein距离)问题,可以使用动态规划来解决。编辑距离是从一个字符串转换为另一个字符串所需的最少操作数,操作包括插入、删除和替换字符。

以下是Java代码示例,实现了计算编辑距离的函数:

java 复制代码
class Solution {
    public int minDistance(String word1, String word2) {
        int m = word1.length();
        int n = word2.length();
        
        // 创建一个二维数组dp,dp[i][j]表示将word1的前i个字符转换为word2的前j个字符所需的最少操作数
        int[][] dp = new int[m + 1][n + 1];
        
        // 初始化dp数组
        for (int i = 0; i <= m; i++) {
            dp[i][0] = i;  // 将word1转换为空字符串,需要i次删除操作
        }
        for (int j = 0; j <= n; j++) {
            dp[0][j] = j;  // 将空字符串转换为word2,需要j次插入操作
        }
        
        // 填充dp数组
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1];  // 字符相同,无需操作
                } else {
                    // 取三种操作中的最小值,加1表示执行当前操作
                    int insert = dp[i][j - 1] + 1;  // 插入操作
                    int delete = dp[i - 1][j] + 1;  // 删除操作
                    int replace = dp[i - 1][j - 1] + 1;  // 替换操作
                    dp[i][j] = Math.min(Math.min(insert, delete), replace);
                }
            }
        }
        
        return dp[m][n];
    }
}

这段代码使用动态规划来填充一个二维数组dp,在dp[i][j]中存储了将word1的前i个字符转换为word2的前j个字符所需的最少操作数。最终返回dp[m][n],其中mn分别是word1word2的长度。

这个算法的时间复杂度为O(m*n),其中m和n是输入字符串的长度。

编辑距离(Edit Distance),也称为Levenshtein距离,是用于衡量两个字符串之间的相似度的数学概念。它表示将一个字符串转换为另一个字符串所需的最小编辑操作次数。这些编辑操作可以是插入字符、删除字符或替换字符。

编辑距离通常使用动态规划算法来计算,其中一个常见的动态规划算法是上面提到的Levenshtein距离算法。该算法计算了两个字符串之间的编辑距离,以确定它们之间的相似性。编辑距离越小,两个字符串越相似。

除了动态规划,编辑距离还可以使用递归和记忆化搜索来解决。以下是递归和记忆化搜索的Java代码示例:

 递归解法:

java 复制代码
class Solution {
    public int minDistance(String word1, String word2) {
        return editDistance(word1, word2, word1.length(), word2.length());
    }
    
    private int editDistance(String word1, String word2, int m, int n) {
        if (m == 0) {
            return n;  // 插入n个字符
        }
        if (n == 0) {
            return m;  // 删除m个字符
        }
        
        if (word1.charAt(m - 1) == word2.charAt(n - 1)) {
            return editDistance(word1, word2, m - 1, n - 1);  // 字符相同,无需操作
        } else {
            int insert = editDistance(word1, word2, m, n - 1) + 1;  // 插入操作
            int delete = editDistance(word1, word2, m - 1, n) + 1;  // 删除操作
            int replace = editDistance(word1, word2, m - 1, n - 1) + 1;  // 替换操作
            return Math.min(Math.min(insert, delete), replace);
        }
    }
}

记忆化搜索解法:

java 复制代码
class Solution {
    public int minDistance(String word1, String word2) {
        int m = word1.length();
        int n = word2.length();
        Integer[][] memo = new Integer[m + 1][n + 1];
        return editDistance(word1, word2, m, n, memo);
    }
    
    private int editDistance(String word1, String word2, int m, int n, Integer[][] memo) {
        if (m == 0) {
            return n;  // 插入n个字符
        }
        if (n == 0) {
            return m;  // 删除m个字符
        }
        
        if (memo[m][n] != null) {
            return memo[m][n];
        }
        
        if (word1.charAt(m - 1) == word2.charAt(n - 1)) {
            memo[m][n] = editDistance(word1, word2, m - 1, n - 1, memo);  // 字符相同,无需操作
        } else {
            int insert = editDistance(word1, word2, m, n - 1, memo) + 1;  // 插入操作
            int delete = editDistance(word1, word2, m - 1, n, memo) + 1;  // 删除操作
            int replace = editDistance(word1, word2, m - 1, n - 1, memo) + 1;  // 替换操作
            memo[m][n] = Math.min(Math.min(insert, delete), replace);
        }
        
        return memo[m][n];
    }
}
相关推荐
Xの哲學2 小时前
从硬中断到 softirq:Linux 软中断机制的全景解剖
linux·服务器·网络·算法·边缘计算
生信碱移2 小时前
单细胞空转CNV分析工具:比 inferCNV 快10倍?!兼容单细胞与空转的 CNV 分析与聚类,竟然还支持肿瘤的亚克隆树构建!
算法·机器学习·数据挖掘·数据分析·聚类
Brduino脑机接口技术答疑2 小时前
TDCA 算法在 SSVEP 场景中:Padding 的应用对象与工程实践指南
人工智能·python·算法·数据分析·脑机接口·eeg
keep_learning1113 小时前
Z-Image模型架构全解析
人工智能·算法·计算机视觉·大模型·多模态
点云SLAM3 小时前
Boost中Graph模块中boost::edge_capacity和boost::edge_capacity_t
数据库·算法·edge·图论·最大团·最大流算法·boost库使用
lihaihui19913 小时前
asan 内存问题分析
算法
算法与编程之美3 小时前
探索不同的损失函数对分类精度的影响.
人工智能·算法·机器学习·分类·数据挖掘
H_BB3 小时前
leetcode160:相交链表
数据结构·算法·链表
前端小L4 小时前
贪心算法专题(十五):借位与填充的智慧——「单调递增的数字」
javascript·算法·贪心算法
前端小L4 小时前
贪心算法专题(十四):万流归宗——「合并区间」
javascript·算法·贪心算法