线性代数(五) | 矩阵对角化 特征值 特征向量

文章目录

  • [1 矩阵的特征值和特征向量究竟是什么?](#1 矩阵的特征值和特征向量究竟是什么?)
  • [2 求特征值和特征向量](#2 求特征值和特征向量)
  • [3 特征值和特征向量的应用](#3 特征值和特征向量的应用)
  • [4 矩阵的对角化](#4 矩阵的对角化)

1 矩阵的特征值和特征向量究竟是什么?

矩阵实际上是一种变换,是一种旋转伸缩变换(方阵) 不是方阵的话还有可能是一种升维和降维的变换

直观理解可以看系列超赞视频线性代数-哔哩哔哩_Bilibili

比如A= ( 1 2 2 1 ) \begin{pmatrix}1&2\\2&1\end{pmatrix} (1221) x= ( 1 2 ) \begin{pmatrix}1\\2\end{pmatrix} (12)

我们给x左乘A实际上是对x进行了一次旋转伸缩变换 Ax= ( 5 4 ) \begin{pmatrix}5\\4\end{pmatrix} (54)

而我们如果仅仅是单纯的伸缩变换,而如果A对x仅仅只能伸缩变换,而不能旋转变换,则称为x为矩阵A的特征向量,伸缩变换的倍数即为特征值

2 求特征值和特征向量

(1)写出特征多项式 ∣ E − A ∣ = 0 |E-A|=0 ∣E−A∣=0 求得特征值

(2)代入特征值求解方程组,解即为我们的特征向量

矩阵的迹

矩阵乘积为行列式

3 特征值和特征向量的应用

已知A的特征值

则 A − 1 A^{-1} A−1的特征值可求

A的一个多项式特征值可求

所以把我们要求的值转换为A的多项式,进而求出特征值,求出行列式的值

4 矩阵的对角化

非对称矩阵对角化

(1)求解特征值和特征向量

(2)特征向量组成我们的相乘矩阵P 特征值作为主对角线上的元素的对角矩阵就是我们对角化的矩阵

对称矩阵对角化求正交矩阵

(1)求解特征值值和特征向量

(2)施密特正交化重根对应的特征向量,再单位化所有特征向量

(3)取向量依次组成我们的正交矩阵Q

相关推荐
阳光_你好4 小时前
简单介绍C++中线性代数运算库Eigen
开发语言·c++·线性代数
HappyAcmen17 小时前
线代第三章向量第二节:向量间的线性关系一
笔记·学习·线性代数
jndingxin1 天前
OpenCV CUDA 模块中的矩阵算术运算-----在频域(复数频谱)中执行逐元素乘法并缩放的函数mulAndScaleSpectrums()
opencv·计算机视觉·矩阵
X-future4262 天前
院校机试刷题第六天:1134矩阵翻转、1052学生成绩管理、1409对称矩阵
线性代数·算法·矩阵
九州ip动态2 天前
自媒体工作室如何矩阵?自媒体矩阵养号策略
线性代数·矩阵·媒体
phoenix@Capricornus2 天前
反向传播算法——矩阵形式递推公式——ReLU传递函数
算法·机器学习·矩阵
田梓燊2 天前
数学复习笔记 19
笔记·线性代数·机器学习
田梓燊3 天前
数学复习笔记 12
笔记·线性代数·机器学习
北上ing3 天前
算法练习:19.JZ29 顺时针打印矩阵
算法·leetcode·矩阵
jerry6094 天前
LLM笔记(六)线性代数
笔记·学习·线性代数·自然语言处理