线性代数(五) | 矩阵对角化 特征值 特征向量

文章目录

  • [1 矩阵的特征值和特征向量究竟是什么?](#1 矩阵的特征值和特征向量究竟是什么?)
  • [2 求特征值和特征向量](#2 求特征值和特征向量)
  • [3 特征值和特征向量的应用](#3 特征值和特征向量的应用)
  • [4 矩阵的对角化](#4 矩阵的对角化)

1 矩阵的特征值和特征向量究竟是什么?

矩阵实际上是一种变换,是一种旋转伸缩变换(方阵) 不是方阵的话还有可能是一种升维和降维的变换

直观理解可以看系列超赞视频线性代数-哔哩哔哩_Bilibili

比如A= ( 1 2 2 1 ) \begin{pmatrix}1&2\\2&1\end{pmatrix} (1221) x= ( 1 2 ) \begin{pmatrix}1\\2\end{pmatrix} (12)

我们给x左乘A实际上是对x进行了一次旋转伸缩变换 Ax= ( 5 4 ) \begin{pmatrix}5\\4\end{pmatrix} (54)

而我们如果仅仅是单纯的伸缩变换,而如果A对x仅仅只能伸缩变换,而不能旋转变换,则称为x为矩阵A的特征向量,伸缩变换的倍数即为特征值

2 求特征值和特征向量

(1)写出特征多项式 ∣ E − A ∣ = 0 |E-A|=0 ∣E−A∣=0 求得特征值

(2)代入特征值求解方程组,解即为我们的特征向量

矩阵的迹

矩阵乘积为行列式

3 特征值和特征向量的应用

已知A的特征值

则 A − 1 A^{-1} A−1的特征值可求

A的一个多项式特征值可求

所以把我们要求的值转换为A的多项式,进而求出特征值,求出行列式的值

4 矩阵的对角化

非对称矩阵对角化

(1)求解特征值和特征向量

(2)特征向量组成我们的相乘矩阵P 特征值作为主对角线上的元素的对角矩阵就是我们对角化的矩阵

对称矩阵对角化求正交矩阵

(1)求解特征值值和特征向量

(2)施密特正交化重根对应的特征向量,再单位化所有特征向量

(3)取向量依次组成我们的正交矩阵Q

相关推荐
云手机掌柜37 分钟前
Tumblr长文运营:亚矩阵云手机助力多账号轮询与关键词布局系统
大数据·服务器·tcp/ip·矩阵·流量运营·虚幻·云手机
tt5555555555551 小时前
字符串与算法题详解:最长回文子串、IP 地址转换、字符串排序、蛇形矩阵与字符串加密
c++·算法·矩阵
快去睡觉~8 小时前
力扣48:旋转矩阵
算法·leetcode·矩阵
点云SLAM1 天前
Eigen中Dense 模块简要介绍和实战应用示例(最小二乘拟合直线、协方差矩阵计算和稀疏求解等)
线性代数·算法·机器学习·矩阵·机器人/slam·密集矩阵与向量·eigen库
酌沧2 天前
大模型的底层运算线性代数
线性代数
老歌老听老掉牙3 天前
SymPy 矩阵到 NumPy 数组的全面转换指南
python·线性代数·矩阵·numpy·sympy
星期天要睡觉3 天前
机器学习——CountVectorizer将文本集合转换为 基于词频的特征矩阵
人工智能·机器学习·矩阵
洋曼巴-young3 天前
240. 搜索二维矩阵 II
数据结构·算法·矩阵
何妨重温wdys3 天前
矩阵链相乘的最少乘法次数(动态规划解法)
c++·算法·矩阵·动态规划
Keying,,,,4 天前
力扣hot100 | 矩阵 | 73. 矩阵置零、54. 螺旋矩阵、48. 旋转图像、240. 搜索二维矩阵 II
python·算法·leetcode·矩阵