隐私计算python实现Paillier同态加密

1.基本概念

Paillier同态加密是一种公钥加密方案,具有同态加密的特性。它由Pascal Paillier于1999年提出。

Paillier同态加密基于数论问题,其安全性基于大整数分解问题和离散对数问题的困难性。该方案可以用于保护隐私数据,同时支持在加密状态下对加密的数据进行运算。

Paillier同态加密方案包含两个主要算法:加密算法和解密算法。其中,加密算法用于将明文加密为密文,解密算法用于将密文解密为明文。此外,该方案还包括一个密钥生成算法,用于生成加密和解密所需的公钥和私钥。

2.加解密过程

2.1密钥生成

1.随机选择两个长度相等的大素数p,q,并满足gcd(pq,(p-1)(q-1))=1,这里gcd表示最大公约数。

2.计算n=pq以及λ=lcm(p-1,q-1),这里lcm表示最小公倍数

3.随机选择整数g(也可以令g=n+1)

4.定义L函数:L(x)=(x-1)/n,计算

公钥pk=(n,g),私钥sk=(λ,μ)

2.2加密

1.输入明文信息m

2.选择随机整数r,且gcd(r,n)=1

3.计算密文

2.3解密

1.输入密文c

2.计算明文

2.4同态加证明

3.加解密示例

3.1密钥生成

1.这里我们p、q选取简单的素数,即p=17,q=23

2.计算n=pq=391,λ=lcm(16,22)=176

3.取整数g=n+1=392

4.计算

公钥pk=(n,g)=(391,392),私钥sk=(176,20)

3.2加密

1.明文m=8

2.选择随机数r=5,gcd(5,391)=1

3.计算密文

3.3解密

1.输入密文15310

2.计算明文

4.代码实现

复制代码
"""
@Time : 2023/10/8 0008 16:17
@Auth : yeqc
"""
# 部分同态加密: paillier同态加密

from phe import paillier

# 创建Paillier 密钥对
public_key, private_key = paillier.generate_paillier_keypair()

# # 明文
# M = 42
# # 加密明文
# encrypted_M = public_key.encrypt(M)
#
# # 解密密文
# decrypted_M = private_key.decrypt(encrypted_M)
#
# print(f'明文{M}')
# print(f'加密密文:{encrypted_M.ciphertext()}')#.ciphertext()实现纯文本输出
# print(f'解密密文:{decrypted_M}')

# ------------------以下是密文加 实现明文加-------------------
# 明文
M1, M2 = 25, 70
# 加密密文
encrypted_M1, encrypted_M2 = public_key.encrypt(M1), public_key.encrypt(M2)

# 密文相加
en_M_sum = encrypted_M1 + encrypted_M2
# 解密密文
de_M_sum = private_key.decrypt(en_M_sum)
print(f'M1 = {M1},M2 = {M2}')
print(f'M1加密密文 en_M1 = {encrypted_M1}, M2加密密文 en_M2 = {encrypted_M2}')
print(f'密文相加 en_M_sum = {en_M_sum}')
print(f'解密密文 de_M_sum = {de_M_sum}')
相关推荐
☆璇38 分钟前
【数据结构】排序
c语言·开发语言·数据结构·算法·排序算法
艾莉丝努力练剑4 小时前
【LeetCode&数据结构】单链表的应用——反转链表问题、链表的中间节点问题详解
c语言·开发语言·数据结构·学习·算法·leetcode·链表
_殊途5 小时前
《Java HashMap底层原理全解析(源码+性能+面试)》
java·数据结构·算法
珊瑚里的鱼9 小时前
LeetCode 692题解 | 前K个高频单词
开发语言·c++·算法·leetcode·职场和发展·学习方法
秋说10 小时前
【PTA数据结构 | C语言版】顺序队列的3个操作
c语言·数据结构·算法
lifallen10 小时前
Kafka 时间轮深度解析:如何O(1)处理定时任务
java·数据结构·分布式·后端·算法·kafka
liupenglove10 小时前
自动驾驶数据仓库:时间片合并算法。
大数据·数据仓库·算法·elasticsearch·自动驾驶
python_tty11 小时前
排序算法(二):插入排序
算法·排序算法
然我11 小时前
面试官:如何判断元素是否出现过?我:三种哈希方法任你选
前端·javascript·算法
F_D_Z12 小时前
【EM算法】三硬币模型
算法·机器学习·概率论·em算法·极大似然估计