深度学习之pytorch第一课

学习使用pytorch,然后进行简单的线性模型的训练与保存

学习代码如下:

复制代码
import numpy as np
import torch
import torch.nn as nn
x_value = [i for i in range(11)]
x_train = np.array(x_value,dtype=np.float32)
print(x_train.shape)
x_train = x_train.reshape(-1,1)  # 将数据转换成矩阵
print(x_train.shape)
y_value = [2*i+1 for i in x_value]
y_train = np.array(y_value,dtype=np.float32)
print(y_train.shape)
y_train = y_train.reshape(-1,1) # 将数据转换成矩阵
print(y_train.shape)

class LinearRegressionModel(nn.Module):  # 我们只需要在此类中写道我们用到了哪些层
    def __init__(self,input_dim,output_dim):
        super(LinearRegressionModel, self).__init__()
        self.linear = nn.Linear(input_dim, output_dim) # 输入输出的维度 这是我们要更改的内容
    def forward(self, x): # 在深度学习中走的层
        out = self.linear(x) #这是我们要改的内容
        return out
input_dim = 1
output_dim = 1
model = LinearRegressionModel(input_dim,output_dim)
print(model)
# 指定好参数以及算是函数
epochs = 1000 # 一共执行了1000次
learning_rate = 0.01  # 学习率是0.01
optimizer = torch.optim.SGD(model.parameters(),lr=learning_rate)  # 指定相应的优化器,优化的是模型计算的参数
criterion = nn.MSELoss()  # 损失函数

# 下面是训练模型
for epoch in range(epochs):
    epoch += 1
    # 注意训练模型要转换成tensor形式
    inputs = torch.from_numpy(x_train)
    labels = torch.from_numpy(y_train)

    # 梯度每次迭代用完都要进行清零,不然就会累加
    optimizer.zero_grad()

    # 前向传播
    outputs = model(inputs)

    # 计算损失
    loss = criterion(outputs,labels)

    #反向传播
    loss.backward()

    # 更新权重参数
    optimizer.step()

    if epoch % 50 == 0:
        print('epoch{}, loss{}'.format(epoch, loss.item()))

# 测试模型预测结果
predicted = model(torch.from_numpy(x_train).requires_grad_()).data.numpy()
print(predicted)

# 模型的保存与读取
torch.save(model.state_dict(),'model.pkl')# 将模型的参数保存在model.pkl里面,以字典的形式进行保存
a = model.load_state_dict(torch.load('model.pkl'))# 读取model.pkl的参数
print(a)

这是用cpu跑的,但是一般都是使用gpu跑的

只需要将数据和模型传入cuda内行了

改版

需要写入

device = torch.device("cuda:0"if torch.cuda.is_available() else"cpu")

model.to(device)

复制代码
import numpy as np
import torch
import torch.nn as nn
x_value = [i for i in range(11)]
x_train = np.array(x_value,dtype=np.float32)
print(x_train.shape)
x_train = x_train.reshape(-1,1)  # 将数据转换成矩阵
print(x_train.shape)
y_value = [2*i+1 for i in x_value]
y_train = np.array(y_value,dtype=np.float32)
print(y_train.shape)
y_train = y_train.reshape(-1,1) # 将数据转换成矩阵
print(y_train.shape)
device = torch.device("cuda:0" if torch.cuda.is_available() else"cpu")

class LinearRegressionModel(nn.Module):  # 我们只需要在此类中写道我们用到了哪些层
    def __init__(self,input_dim,output_dim):
        super(LinearRegressionModel, self).__init__()
        self.linear = nn.Linear(input_dim, output_dim) # 输入输出的维度 这是我们要更改的内容
    def forward(self, x): # 在深度学习中走的层
        out = self.linear(x) #这是我们要改的内容
        return out
input_dim = 1
output_dim = 1
model = LinearRegressionModel(input_dim,output_dim)

# 将模型放入cuda内进行训练
model.to(device)
print(model)
# 指定好参数以及算是函数
epochs = 1000 # 一共执行了1000次
learning_rate = 0.01  # 学习率是0.01
optimizer = torch.optim.SGD(model.parameters(),lr=learning_rate)  # 指定相应的优化器,优化的是模型计算的参数
criterion = nn.MSELoss()  # 损失函数

# 下面是训练模型
for epoch in range(epochs):
    epoch += 1
    # 注意训练模型要转换成tensor形式
    # 将数据放入cuda内
    inputs = torch.from_numpy(x_train).to(device)
    labels = torch.from_numpy(y_train).to(device)

    # 梯度每次迭代用完都要进行清零,不然就会累加
    optimizer.zero_grad()

    # 前向传播
    outputs = model(inputs)

    # 计算损失
    loss = criterion(outputs,labels)

    #反向传播
    loss.backward()

    # 更新权重参数
    optimizer.step()

    if epoch % 50 == 0:
        print('epoch{}, loss{}'.format(epoch, loss.item()))
相关推荐
蚝油菜花几秒前
Cua:Mac用户狂喜!这个开源框架让AI直接接管你的电脑,快速实现AI自动化办公
人工智能·开源
蚝油菜花1 分钟前
AutoAgent:无需编程!接入DeepSeek用自然语言创建和部署AI智能体!港大开源框架让AI智能体开发变成填空题
人工智能·开源
nuise_3 分钟前
李宏毅机器学习笔记06 | 鱼和熊掌可以兼得的机器学习 - 内容接宝可梦
人工智能·笔记·机器学习
声网16 分钟前
MiniMax 发布新 TTS 模型 Speech-02,轻松制作长篇有声内容;Meta 高端眼镜年底推出:售价上千美元丨日报
人工智能
HeteroCat21 分钟前
OpenAI 官方学院 -- 提示词课程要点
人工智能·chatgpt
每天做一点改变23 分钟前
AI Agent成为行业竞争新焦点:技术革新与商业重构的双重浪潮
人工智能·重构
大美B端工场-B端系统美颜师25 分钟前
定制化管理系统与通用管理系统,谁更胜一筹?
人工智能·信息可视化·数据挖掘·数据分析
生信小鹏26 分钟前
Nature旗下 | npj Digital Medicine | 图像+转录组+临床变量三合一,多模态AI预测化疗反应,值得复现学习的完整框架
人工智能·学习·免疫治疗·scrna-seq·scrna
OpenLoong 开源社区40 分钟前
技术视界 | 从哲学到技术:人形机器人感知导航的探索(下篇)
人工智能·机器人·开源社区·人形机器人·openloong
csssnxy1 小时前
叁仟数智指路机器人的主要功能有哪些?
人工智能