深度学习之pytorch第一课

学习使用pytorch,然后进行简单的线性模型的训练与保存

学习代码如下:

复制代码
import numpy as np
import torch
import torch.nn as nn
x_value = [i for i in range(11)]
x_train = np.array(x_value,dtype=np.float32)
print(x_train.shape)
x_train = x_train.reshape(-1,1)  # 将数据转换成矩阵
print(x_train.shape)
y_value = [2*i+1 for i in x_value]
y_train = np.array(y_value,dtype=np.float32)
print(y_train.shape)
y_train = y_train.reshape(-1,1) # 将数据转换成矩阵
print(y_train.shape)

class LinearRegressionModel(nn.Module):  # 我们只需要在此类中写道我们用到了哪些层
    def __init__(self,input_dim,output_dim):
        super(LinearRegressionModel, self).__init__()
        self.linear = nn.Linear(input_dim, output_dim) # 输入输出的维度 这是我们要更改的内容
    def forward(self, x): # 在深度学习中走的层
        out = self.linear(x) #这是我们要改的内容
        return out
input_dim = 1
output_dim = 1
model = LinearRegressionModel(input_dim,output_dim)
print(model)
# 指定好参数以及算是函数
epochs = 1000 # 一共执行了1000次
learning_rate = 0.01  # 学习率是0.01
optimizer = torch.optim.SGD(model.parameters(),lr=learning_rate)  # 指定相应的优化器,优化的是模型计算的参数
criterion = nn.MSELoss()  # 损失函数

# 下面是训练模型
for epoch in range(epochs):
    epoch += 1
    # 注意训练模型要转换成tensor形式
    inputs = torch.from_numpy(x_train)
    labels = torch.from_numpy(y_train)

    # 梯度每次迭代用完都要进行清零,不然就会累加
    optimizer.zero_grad()

    # 前向传播
    outputs = model(inputs)

    # 计算损失
    loss = criterion(outputs,labels)

    #反向传播
    loss.backward()

    # 更新权重参数
    optimizer.step()

    if epoch % 50 == 0:
        print('epoch{}, loss{}'.format(epoch, loss.item()))

# 测试模型预测结果
predicted = model(torch.from_numpy(x_train).requires_grad_()).data.numpy()
print(predicted)

# 模型的保存与读取
torch.save(model.state_dict(),'model.pkl')# 将模型的参数保存在model.pkl里面,以字典的形式进行保存
a = model.load_state_dict(torch.load('model.pkl'))# 读取model.pkl的参数
print(a)

这是用cpu跑的,但是一般都是使用gpu跑的

只需要将数据和模型传入cuda内行了

改版

需要写入

device = torch.device("cuda:0"if torch.cuda.is_available() else"cpu")

model.to(device)

复制代码
import numpy as np
import torch
import torch.nn as nn
x_value = [i for i in range(11)]
x_train = np.array(x_value,dtype=np.float32)
print(x_train.shape)
x_train = x_train.reshape(-1,1)  # 将数据转换成矩阵
print(x_train.shape)
y_value = [2*i+1 for i in x_value]
y_train = np.array(y_value,dtype=np.float32)
print(y_train.shape)
y_train = y_train.reshape(-1,1) # 将数据转换成矩阵
print(y_train.shape)
device = torch.device("cuda:0" if torch.cuda.is_available() else"cpu")

class LinearRegressionModel(nn.Module):  # 我们只需要在此类中写道我们用到了哪些层
    def __init__(self,input_dim,output_dim):
        super(LinearRegressionModel, self).__init__()
        self.linear = nn.Linear(input_dim, output_dim) # 输入输出的维度 这是我们要更改的内容
    def forward(self, x): # 在深度学习中走的层
        out = self.linear(x) #这是我们要改的内容
        return out
input_dim = 1
output_dim = 1
model = LinearRegressionModel(input_dim,output_dim)

# 将模型放入cuda内进行训练
model.to(device)
print(model)
# 指定好参数以及算是函数
epochs = 1000 # 一共执行了1000次
learning_rate = 0.01  # 学习率是0.01
optimizer = torch.optim.SGD(model.parameters(),lr=learning_rate)  # 指定相应的优化器,优化的是模型计算的参数
criterion = nn.MSELoss()  # 损失函数

# 下面是训练模型
for epoch in range(epochs):
    epoch += 1
    # 注意训练模型要转换成tensor形式
    # 将数据放入cuda内
    inputs = torch.from_numpy(x_train).to(device)
    labels = torch.from_numpy(y_train).to(device)

    # 梯度每次迭代用完都要进行清零,不然就会累加
    optimizer.zero_grad()

    # 前向传播
    outputs = model(inputs)

    # 计算损失
    loss = criterion(outputs,labels)

    #反向传播
    loss.backward()

    # 更新权重参数
    optimizer.step()

    if epoch % 50 == 0:
        print('epoch{}, loss{}'.format(epoch, loss.item()))
相关推荐
人工智能训练几秒前
UE5 如何显示蓝图运行流程
人工智能·ue5·ai编程·数字人·蓝图
deephub31 分钟前
构建自己的AI编程助手:基于RAG的上下文感知实现方案
人工智能·机器学习·ai编程·rag·ai编程助手
AI营销干货站34 分钟前
工业B2B获客难?原圈科技解析2026五大AI营销增长引擎
人工智能
程序员老刘·36 分钟前
重拾Eval能力:D4rt为Flutter注入AI进化基因
人工智能·flutter·跨平台开发·客户端开发
kebijuelun37 分钟前
FlashInfer-Bench:把 AI 生成的 GPU Kernel 放进真实 LLM 系统的“闭环引擎”
人工智能·gpt·深度学习·机器学习·语言模型
Deepoch43 分钟前
Deepoc具身模型开发板:让炒菜机器人成为您的智能厨师
人工智能·机器人·开发板·具身模型·deepoc·炒菜机器人·厨房机器人
Elastic 中国社区官方博客1 小时前
Elastic:DevRel 通讯 — 2026 年 1 月
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
寻星探路1 小时前
【算法专题】滑动窗口:从“无重复字符”到“字母异位词”的深度剖析
java·开发语言·c++·人工智能·python·算法·ai
盈创力和20071 小时前
智慧城市中智能井盖的未来演进:从边缘感知节点到城市智能体
人工智能·智慧城市·智慧市政·智慧水务·智能井盖传感器·综合管廊
njsgcs1 小时前
ppo 找出口模型 训练笔记
人工智能·笔记