深度学习之pytorch第一课

学习使用pytorch,然后进行简单的线性模型的训练与保存

学习代码如下:

复制代码
import numpy as np
import torch
import torch.nn as nn
x_value = [i for i in range(11)]
x_train = np.array(x_value,dtype=np.float32)
print(x_train.shape)
x_train = x_train.reshape(-1,1)  # 将数据转换成矩阵
print(x_train.shape)
y_value = [2*i+1 for i in x_value]
y_train = np.array(y_value,dtype=np.float32)
print(y_train.shape)
y_train = y_train.reshape(-1,1) # 将数据转换成矩阵
print(y_train.shape)

class LinearRegressionModel(nn.Module):  # 我们只需要在此类中写道我们用到了哪些层
    def __init__(self,input_dim,output_dim):
        super(LinearRegressionModel, self).__init__()
        self.linear = nn.Linear(input_dim, output_dim) # 输入输出的维度 这是我们要更改的内容
    def forward(self, x): # 在深度学习中走的层
        out = self.linear(x) #这是我们要改的内容
        return out
input_dim = 1
output_dim = 1
model = LinearRegressionModel(input_dim,output_dim)
print(model)
# 指定好参数以及算是函数
epochs = 1000 # 一共执行了1000次
learning_rate = 0.01  # 学习率是0.01
optimizer = torch.optim.SGD(model.parameters(),lr=learning_rate)  # 指定相应的优化器,优化的是模型计算的参数
criterion = nn.MSELoss()  # 损失函数

# 下面是训练模型
for epoch in range(epochs):
    epoch += 1
    # 注意训练模型要转换成tensor形式
    inputs = torch.from_numpy(x_train)
    labels = torch.from_numpy(y_train)

    # 梯度每次迭代用完都要进行清零,不然就会累加
    optimizer.zero_grad()

    # 前向传播
    outputs = model(inputs)

    # 计算损失
    loss = criterion(outputs,labels)

    #反向传播
    loss.backward()

    # 更新权重参数
    optimizer.step()

    if epoch % 50 == 0:
        print('epoch{}, loss{}'.format(epoch, loss.item()))

# 测试模型预测结果
predicted = model(torch.from_numpy(x_train).requires_grad_()).data.numpy()
print(predicted)

# 模型的保存与读取
torch.save(model.state_dict(),'model.pkl')# 将模型的参数保存在model.pkl里面,以字典的形式进行保存
a = model.load_state_dict(torch.load('model.pkl'))# 读取model.pkl的参数
print(a)

这是用cpu跑的,但是一般都是使用gpu跑的

只需要将数据和模型传入cuda内行了

改版

需要写入

device = torch.device("cuda:0"if torch.cuda.is_available() else"cpu")

model.to(device)

复制代码
import numpy as np
import torch
import torch.nn as nn
x_value = [i for i in range(11)]
x_train = np.array(x_value,dtype=np.float32)
print(x_train.shape)
x_train = x_train.reshape(-1,1)  # 将数据转换成矩阵
print(x_train.shape)
y_value = [2*i+1 for i in x_value]
y_train = np.array(y_value,dtype=np.float32)
print(y_train.shape)
y_train = y_train.reshape(-1,1) # 将数据转换成矩阵
print(y_train.shape)
device = torch.device("cuda:0" if torch.cuda.is_available() else"cpu")

class LinearRegressionModel(nn.Module):  # 我们只需要在此类中写道我们用到了哪些层
    def __init__(self,input_dim,output_dim):
        super(LinearRegressionModel, self).__init__()
        self.linear = nn.Linear(input_dim, output_dim) # 输入输出的维度 这是我们要更改的内容
    def forward(self, x): # 在深度学习中走的层
        out = self.linear(x) #这是我们要改的内容
        return out
input_dim = 1
output_dim = 1
model = LinearRegressionModel(input_dim,output_dim)

# 将模型放入cuda内进行训练
model.to(device)
print(model)
# 指定好参数以及算是函数
epochs = 1000 # 一共执行了1000次
learning_rate = 0.01  # 学习率是0.01
optimizer = torch.optim.SGD(model.parameters(),lr=learning_rate)  # 指定相应的优化器,优化的是模型计算的参数
criterion = nn.MSELoss()  # 损失函数

# 下面是训练模型
for epoch in range(epochs):
    epoch += 1
    # 注意训练模型要转换成tensor形式
    # 将数据放入cuda内
    inputs = torch.from_numpy(x_train).to(device)
    labels = torch.from_numpy(y_train).to(device)

    # 梯度每次迭代用完都要进行清零,不然就会累加
    optimizer.zero_grad()

    # 前向传播
    outputs = model(inputs)

    # 计算损失
    loss = criterion(outputs,labels)

    #反向传播
    loss.backward()

    # 更新权重参数
    optimizer.step()

    if epoch % 50 == 0:
        print('epoch{}, loss{}'.format(epoch, loss.item()))
相关推荐
薛定e的猫咪8 小时前
【ICRA 2025】面向杂技机器人的分阶段奖励塑形:一种约束多目标强化学习方法
人工智能·深度学习·机器学习·机器人
高洁018 小时前
产品数字孪生体与数字样机及数字化交付的应用
人工智能·深度学习·算法·数据挖掘·transformer
chatexcel8 小时前
ChatExcel 多模态解析能力上线:AI 自动生成结构化表格实践
人工智能
CHrisFC8 小时前
江苏硕晟LIMS pro3.0:引领实验室信息管理新高度
大数据·人工智能
LOnghas12118 小时前
YOLO11-SPPF-LSKA实现橡胶密封圈表面缺陷检测,提升检测精度与效率
人工智能·计算机视觉·目标跟踪
bclshuai8 小时前
深度学习算法辅助股票分析
人工智能·深度学习·算法
ai_xiaogui8 小时前
SoVitsSvc 4.0 人声转换整合包:羽毛布版一键启动,零环境配置实现高质量 AI 歌声克隆
人工智能·机器学习·sovitssvc 4.0·羽毛布版 ai 变声器一键安装·高保真 ai 歌声转换环境部署·零基础安装 sovitssvc
weisian1518 小时前
入门篇--知名企业-40-中国AI生态全景图:浪潮奔涌,未来已来
人工智能
syounger8 小时前
SAP Business AI:2025年Q4发布亮点
人工智能