深度学习之pytorch第一课

学习使用pytorch,然后进行简单的线性模型的训练与保存

学习代码如下:

复制代码
import numpy as np
import torch
import torch.nn as nn
x_value = [i for i in range(11)]
x_train = np.array(x_value,dtype=np.float32)
print(x_train.shape)
x_train = x_train.reshape(-1,1)  # 将数据转换成矩阵
print(x_train.shape)
y_value = [2*i+1 for i in x_value]
y_train = np.array(y_value,dtype=np.float32)
print(y_train.shape)
y_train = y_train.reshape(-1,1) # 将数据转换成矩阵
print(y_train.shape)

class LinearRegressionModel(nn.Module):  # 我们只需要在此类中写道我们用到了哪些层
    def __init__(self,input_dim,output_dim):
        super(LinearRegressionModel, self).__init__()
        self.linear = nn.Linear(input_dim, output_dim) # 输入输出的维度 这是我们要更改的内容
    def forward(self, x): # 在深度学习中走的层
        out = self.linear(x) #这是我们要改的内容
        return out
input_dim = 1
output_dim = 1
model = LinearRegressionModel(input_dim,output_dim)
print(model)
# 指定好参数以及算是函数
epochs = 1000 # 一共执行了1000次
learning_rate = 0.01  # 学习率是0.01
optimizer = torch.optim.SGD(model.parameters(),lr=learning_rate)  # 指定相应的优化器,优化的是模型计算的参数
criterion = nn.MSELoss()  # 损失函数

# 下面是训练模型
for epoch in range(epochs):
    epoch += 1
    # 注意训练模型要转换成tensor形式
    inputs = torch.from_numpy(x_train)
    labels = torch.from_numpy(y_train)

    # 梯度每次迭代用完都要进行清零,不然就会累加
    optimizer.zero_grad()

    # 前向传播
    outputs = model(inputs)

    # 计算损失
    loss = criterion(outputs,labels)

    #反向传播
    loss.backward()

    # 更新权重参数
    optimizer.step()

    if epoch % 50 == 0:
        print('epoch{}, loss{}'.format(epoch, loss.item()))

# 测试模型预测结果
predicted = model(torch.from_numpy(x_train).requires_grad_()).data.numpy()
print(predicted)

# 模型的保存与读取
torch.save(model.state_dict(),'model.pkl')# 将模型的参数保存在model.pkl里面,以字典的形式进行保存
a = model.load_state_dict(torch.load('model.pkl'))# 读取model.pkl的参数
print(a)

这是用cpu跑的,但是一般都是使用gpu跑的

只需要将数据和模型传入cuda内行了

改版

需要写入

device = torch.device("cuda:0"if torch.cuda.is_available() else"cpu")

model.to(device)

复制代码
import numpy as np
import torch
import torch.nn as nn
x_value = [i for i in range(11)]
x_train = np.array(x_value,dtype=np.float32)
print(x_train.shape)
x_train = x_train.reshape(-1,1)  # 将数据转换成矩阵
print(x_train.shape)
y_value = [2*i+1 for i in x_value]
y_train = np.array(y_value,dtype=np.float32)
print(y_train.shape)
y_train = y_train.reshape(-1,1) # 将数据转换成矩阵
print(y_train.shape)
device = torch.device("cuda:0" if torch.cuda.is_available() else"cpu")

class LinearRegressionModel(nn.Module):  # 我们只需要在此类中写道我们用到了哪些层
    def __init__(self,input_dim,output_dim):
        super(LinearRegressionModel, self).__init__()
        self.linear = nn.Linear(input_dim, output_dim) # 输入输出的维度 这是我们要更改的内容
    def forward(self, x): # 在深度学习中走的层
        out = self.linear(x) #这是我们要改的内容
        return out
input_dim = 1
output_dim = 1
model = LinearRegressionModel(input_dim,output_dim)

# 将模型放入cuda内进行训练
model.to(device)
print(model)
# 指定好参数以及算是函数
epochs = 1000 # 一共执行了1000次
learning_rate = 0.01  # 学习率是0.01
optimizer = torch.optim.SGD(model.parameters(),lr=learning_rate)  # 指定相应的优化器,优化的是模型计算的参数
criterion = nn.MSELoss()  # 损失函数

# 下面是训练模型
for epoch in range(epochs):
    epoch += 1
    # 注意训练模型要转换成tensor形式
    # 将数据放入cuda内
    inputs = torch.from_numpy(x_train).to(device)
    labels = torch.from_numpy(y_train).to(device)

    # 梯度每次迭代用完都要进行清零,不然就会累加
    optimizer.zero_grad()

    # 前向传播
    outputs = model(inputs)

    # 计算损失
    loss = criterion(outputs,labels)

    #反向传播
    loss.backward()

    # 更新权重参数
    optimizer.step()

    if epoch % 50 == 0:
        print('epoch{}, loss{}'.format(epoch, loss.item()))
相关推荐
山烛14 分钟前
KNN 算法中的各种距离:从原理到应用
人工智能·python·算法·机器学习·knn·k近邻算法·距离公式
盲盒Q24 分钟前
《频率之光:归途之光》
人工智能·硬件架构·量子计算
墨染点香33 分钟前
第七章 Pytorch构建模型详解【构建CIFAR10模型结构】
人工智能·pytorch·python
go546315846533 分钟前
基于分组规则的Excel数据分组优化系统设计与实现
人工智能·学习·生成对抗网络·数学建模·语音识别
茫茫人海一粒沙39 分钟前
vLLM 的“投机取巧”:Speculative Decoding 如何加速大语言模型推理
人工智能·语言模型·自然语言处理
诗酒当趁年华41 分钟前
【NLP实践】二、自训练数据实现中文文本分类并提供RestfulAPI服务
人工智能·自然语言处理·分类
静心问道1 小时前
Idefics3:构建和更好地理解视觉-语言模型:洞察与未来方向
人工智能·多模态·ai技术应用
sheep88881 小时前
AI与区块链Web3技术融合:重塑数字经济的未来格局
人工智能·区块链
奋进的孤狼1 小时前
【Spring AI】阿里云DashScope灵积模型
人工智能·spring·阿里云·ai·云计算
AIGC_北苏1 小时前
让UV管理一切!!!
linux·人工智能·uv