学习使用pytorch,然后进行简单的线性模型的训练与保存
学习代码如下:
import numpy as np
import torch
import torch.nn as nn
x_value = [i for i in range(11)]
x_train = np.array(x_value,dtype=np.float32)
print(x_train.shape)
x_train = x_train.reshape(-1,1) # 将数据转换成矩阵
print(x_train.shape)
y_value = [2*i+1 for i in x_value]
y_train = np.array(y_value,dtype=np.float32)
print(y_train.shape)
y_train = y_train.reshape(-1,1) # 将数据转换成矩阵
print(y_train.shape)
class LinearRegressionModel(nn.Module): # 我们只需要在此类中写道我们用到了哪些层
def __init__(self,input_dim,output_dim):
super(LinearRegressionModel, self).__init__()
self.linear = nn.Linear(input_dim, output_dim) # 输入输出的维度 这是我们要更改的内容
def forward(self, x): # 在深度学习中走的层
out = self.linear(x) #这是我们要改的内容
return out
input_dim = 1
output_dim = 1
model = LinearRegressionModel(input_dim,output_dim)
print(model)
# 指定好参数以及算是函数
epochs = 1000 # 一共执行了1000次
learning_rate = 0.01 # 学习率是0.01
optimizer = torch.optim.SGD(model.parameters(),lr=learning_rate) # 指定相应的优化器,优化的是模型计算的参数
criterion = nn.MSELoss() # 损失函数
# 下面是训练模型
for epoch in range(epochs):
epoch += 1
# 注意训练模型要转换成tensor形式
inputs = torch.from_numpy(x_train)
labels = torch.from_numpy(y_train)
# 梯度每次迭代用完都要进行清零,不然就会累加
optimizer.zero_grad()
# 前向传播
outputs = model(inputs)
# 计算损失
loss = criterion(outputs,labels)
#反向传播
loss.backward()
# 更新权重参数
optimizer.step()
if epoch % 50 == 0:
print('epoch{}, loss{}'.format(epoch, loss.item()))
# 测试模型预测结果
predicted = model(torch.from_numpy(x_train).requires_grad_()).data.numpy()
print(predicted)
# 模型的保存与读取
torch.save(model.state_dict(),'model.pkl')# 将模型的参数保存在model.pkl里面,以字典的形式进行保存
a = model.load_state_dict(torch.load('model.pkl'))# 读取model.pkl的参数
print(a)
这是用cpu跑的,但是一般都是使用gpu跑的
只需要将数据和模型传入cuda内行了
改版
需要写入
device = torch.device("cuda:0"if torch.cuda.is_available() else"cpu")
model.to(device)
import numpy as np
import torch
import torch.nn as nn
x_value = [i for i in range(11)]
x_train = np.array(x_value,dtype=np.float32)
print(x_train.shape)
x_train = x_train.reshape(-1,1) # 将数据转换成矩阵
print(x_train.shape)
y_value = [2*i+1 for i in x_value]
y_train = np.array(y_value,dtype=np.float32)
print(y_train.shape)
y_train = y_train.reshape(-1,1) # 将数据转换成矩阵
print(y_train.shape)
device = torch.device("cuda:0" if torch.cuda.is_available() else"cpu")
class LinearRegressionModel(nn.Module): # 我们只需要在此类中写道我们用到了哪些层
def __init__(self,input_dim,output_dim):
super(LinearRegressionModel, self).__init__()
self.linear = nn.Linear(input_dim, output_dim) # 输入输出的维度 这是我们要更改的内容
def forward(self, x): # 在深度学习中走的层
out = self.linear(x) #这是我们要改的内容
return out
input_dim = 1
output_dim = 1
model = LinearRegressionModel(input_dim,output_dim)
# 将模型放入cuda内进行训练
model.to(device)
print(model)
# 指定好参数以及算是函数
epochs = 1000 # 一共执行了1000次
learning_rate = 0.01 # 学习率是0.01
optimizer = torch.optim.SGD(model.parameters(),lr=learning_rate) # 指定相应的优化器,优化的是模型计算的参数
criterion = nn.MSELoss() # 损失函数
# 下面是训练模型
for epoch in range(epochs):
epoch += 1
# 注意训练模型要转换成tensor形式
# 将数据放入cuda内
inputs = torch.from_numpy(x_train).to(device)
labels = torch.from_numpy(y_train).to(device)
# 梯度每次迭代用完都要进行清零,不然就会累加
optimizer.zero_grad()
# 前向传播
outputs = model(inputs)
# 计算损失
loss = criterion(outputs,labels)
#反向传播
loss.backward()
# 更新权重参数
optimizer.step()
if epoch % 50 == 0:
print('epoch{}, loss{}'.format(epoch, loss.item()))