解决UniAD在高版本CUDA、pytorch下运行遇到的问题

UniADhttps://github.com/OpenDriveLab/UniAD是面向行车规划集感知(目标检测与跟踪)、建图(不是像SLAM那样对环境重建的建图,而是实时全景分割图像里的道路、隔离带等行车需关注的相关物体)、和轨迹规划和占用预测等多任务模块于一体的统一大模型。官网上的安装说明是按作者使用的较低版本的CUDA11.1.1和pytorch1.9.1来的,对应的mmcv也是较低版本的1.4版,我们工作服务器上的nvidia ngc docker环境里使用的这些支持工具软件早已是较高版本的,于是想在我们自己的环境里把UniAD跑起来,安装过程中遇到一些坑,最终都一一解决了,也实测过了,UniAD完全可以正常跑在CUDA11.6+pytorch1.12.0+mmcv1.6+mmseg0.24.0+mmdet2.24+mmdet3d1.0.0rc4组成的环境下。

安装和解决问题的步骤如下:

1.拉取使用CUDA11.6的NVIDIA NGC docker镜像并创建容器作为UniAD的运行环境

2.安装pytorch和torchvision:

pip install torch==1.12.0+cu116 torchvision==0.13.0+cu116 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu116

3.检查CUDA_HOME环境变量是否已设置,如果没有,则设置一下:

export CUDA_HOME=/usr/local/cuda

4.受CUDA和pytorch版本限制,mmcv需要安装比1.4高版本的1.6.0(关于openmmlab的mm序列框架包的安装版本对应关系参见openMMLab的mmcv和mmdet、mmdet3d、mmseg版本对应关系-CSDN博客: )

pip install mmcv-full==1.6.0 -f https://download.openmmlab.com/mmcv/dist/cu116/torch1.12.0/index.html

按照下面的对应关系:

分别安装mmdet2.24.0和mmseg0.24.0

pip install mmdet==2.24.0

pip install mmsegmentation==0.24.0

下载mmdetection3d源码然后切换到v1.0.0rc4版:

git clone https://github.com/open-mmlab/mmdetection3d.git

cd mmdetection3d

git checkout v1.0.0rc4

安装支持包并从源码编译和安装mmdet3d:

pip install scipy==1.7.3

pip install scikit-image==0.20.0

#将requirements/runtime.txt里修改一下numba的版本:

numba==0.53.1

#numba==0.53.0

pip install -v -e .

安装好了支持环境,然后下载和安装UniAD:

git clone https://github.com/OpenDriveLab/UniAD.git

cd UniAD

#修改一下requirements.txt里的numpy版本然后安装相关支持包:

#numpy==1.20.0

numpy==1.22.0

pip install -r requirements.txt

#下载相关预训练权重文件

mkdir ckpts && cd ckpts

wget https://github.com/zhiqi-li/storage/releases/download/v1.0/bevformer_r101_dcn_24ep.pth

wget https://github.com/OpenDriveLab/UniAD/releases/download/v1.0/uniad_base_track_map.pth

wget https://github.com/OpenDriveLab/UniAD/releases/download/v1.0.1/uniad_base_e2e.pth

按照https://github.com/OpenDriveLab/UniAD/blob/main/docs/DATA_PREP.md说明下载和展开整理NuScenes数据集

下载data infos文件:

cd UniAD/data
mkdir infos && cd infos
wget https://github.com/OpenDriveLab/UniAD/releases/download/v1.0/nuscenes_infos_temporal_train.pkl  # train_infos
wget https://github.com/OpenDriveLab/UniAD/releases/download/v1.0/nuscenes_infos_temporal_val.pkl  # val_infos

假如NuScenes数据集和data infos文件已经下载好并解压存放到 ./data/下了并按照下面的结构存放的:

UniAD
├── projects/
├── tools/
├── ckpts/
│   ├── bevformer_r101_dcn_24ep.pth
│   ├── uniad_base_track_map.pth
|   ├── uniad_base_e2e.pth
├── data/
│   ├── nuscenes/
│   │   ├── can_bus/
│   │   ├── maps/
│   │   │   ├──36092f0b03a857c6a3403e25b4b7aab3.png
│   │   │   ├──37819e65e09e5547b8a3ceaefba56bb2.png
│   │   │   ├──53992ee3023e5494b90c316c183be829.png
│   │   │   ├──93406b464a165eaba6d9de76ca09f5da.png
│   │   │   ├──basemap
│   │   │   ├──expansion
│   │   │   ├──prediction
│   │   ├── samples/
│   │   ├── sweeps/
│   │   ├── v1.0-test/
│   │   ├── v1.0-trainval/
│   ├── infos/
│   │   ├── nuscenes_infos_temporal_train.pkl
│   │   ├── nuscenes_infos_temporal_val.pkl
│   ├── others/
│   │   ├── motion_anchor_infos_mode6.pkl

注意:map(v1.3) extensions压缩包下载后展开的三个目录basemap、expansion、prediction需要放在maps目录下,而不是和samples、sweeps等目录平级,NuScenes的train所有数据压缩包展开后,samples的最底层的每个子目录下都是34149张图片,sweeps里的子母录下的图片数量则是不等的,例如:163881、164274、164166、161453、160856、164266...等,把没有标注的test数据的压缩包在nuscenes目录下展开后,其里面samples和sweeps目录里子目录下的图片会自动拷贝到nuscenes/samples和nuscenes/sweeps下的对应子目录里去,再次统计会看到samples下的每个子目录里的图片数量变成了40157,而sweeps下的子目录里的图片数量则变成了193153、189171、189905、193082、193168、192699...

执行

复制代码
./tools/uniad_dist_eval.sh ./projects/configs/stage1_track_map/base_track_map.py ./ckpts/uniad_base_track_map.pth 8

运行一下试试看,最后一个参数是GPU个数,我的工作环境和作者的工作环境一样都是8张A100卡,所以照着做,如果卡少,修改这个参数,例如使用1,也是可以跑的,只是比较慢。

第一次运行上面命令可能会遇到下面的问题:

  1. partially initialized module 'cv2' has no attribute '_registerMatType' (most likely due to a circular import)

这是因为环境里的opencv-python版本太高了,版本不兼容引起的,我的是4.8.1.78,查了一下网上,需要降到4.5,执行下面的命令重新安装opencv-python4.5即可:

pip install opencv-python==4.5.4.58

  1. ImportError: libGL.so.1: cannot open shared object file: No such file or directory

安装libgl即可:

sudo apt-get update && sudo apt-get install libgl1

  1. AssertionError: MMCV==1.6.0 is used but incompatible. Please install mmcv>=(1, 3, 13, 0, 0, 0), <=(1, 5, 0, 0, 0, 0)

    Traceback (most recent call last):
    File "tools/create_data.py", line 4, in <module>
    from data_converter import uniad_nuscenes_converter as nuscenes_converter
    File "/workspace/workspace_fychen/UniAD/tools/data_converter/uniad_nuscenes_converter.py", line 13, in <module>
    from mmdet3d.core.bbox.box_np_ops import points_cam2img
    File "/workspace/workspace_fychen/mmdetection3d/mmdet3d/init.py", line 5, in <module>
    import mmseg
    File "/opt/conda/lib/python3.8/site-packages/mmseg/init.py", line 58, in <module>
    assert (mmcv_min_version <= mmcv_version <= mmcv_max_version),
    AssertionError: MMCV==1.6.0 is used but incompatible. Please install mmcv>=(1, 3, 13, 0, 0, 0), <=(1, 5, 0, 0, 0, 0).

这错误是python3.8/site-packages/mmseg/init.py抛出来的,说明mmseg和mmcv1.6.0版本不兼容,它要求安装mmcv的1.3-1.5版,说明mmseg自身版本低了,原因是开始安装的mmsegmenation版本低了,改安装mmseg0.24.0即可。其它功能框架包遇到版本问题做类似处理。

4.KeyError: 'DiceCost is already registered in Match Cost'

Traceback (most recent call last):
  File "./tools/test.py", line 16, in <module>
    from projects.mmdet3d_plugin.datasets.builder import build_dataloader
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/__init__.py", line 3, in <module>
    from .core.bbox.match_costs import BBox3DL1Cost, DiceCost
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/core/bbox/match_costs/__init__.py", line 2, in <module>
    from .match_cost import BBox3DL1Cost, DiceCost
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/core/bbox/match_costs/match_cost.py", line 32, in <module>
    Traceback (most recent call last):
class DiceCost(object):
  File "/opt/conda/lib/python3.8/site-packages/mmcv/utils/registry.py", line 337, in _register
  File "./tools/test.py", line 16, in <module>
    from projects.mmdet3d_plugin.datasets.builder import build_dataloader
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/__init__.py", line 3, in <module>
    from .core.bbox.match_costs import BBox3DL1Cost, DiceCost
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/core/bbox/match_costs/__init__.py", line 2, in <module>
    from .match_cost import BBox3DL1Cost, DiceCost
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/core/bbox/match_costs/match_cost.py", line 32, in <module>
    class DiceCost(object):
  File "/opt/conda/lib/python3.8/site-packages/mmcv/utils/registry.py", line 337, in _register
        self._register_module(module=module, module_name=name, force=force)self._register_module(module=module, module_name=name, force=force)

  File "/opt/conda/lib/python3.8/site-packages/mmcv/utils/misc.py", line 340, in new_func
  File "/opt/conda/lib/python3.8/site-packages/mmcv/utils/misc.py", line 340, in new_func
    output = old_func(*args, **kwargs)
  File "/opt/conda/lib/python3.8/site-packages/mmcv/utils/registry.py", line 272, in _register_module
    raise KeyError(f'{name} is already registered '
KeyError: 'DiceCost is already registered in Match Cost''

这种类注册重复了的问题是因为UniAD的mmdet3d_plugin和我安装的mmdetection的文件python3.8/site-packages/mmdet/core/bbox/match_costs/match_cost.py里有同名的DiceCost类(UniAD作者使用的mmdetection版本较低应该没有这个问题),读mmcv里面python3.8/site-packages/mmcv/utils/registry.py的注册代码可以知道这个问题可以设置参数force=True来解决:

 @deprecated_api_warning(name_dict=dict(module_class='module'))
    def _register_module(self, module, module_name=None, force=False):
        if not inspect.isclass(module) and not inspect.isfunction(module):
            raise TypeError('module must be a class or a function, '
                            f'but got {type(module)}')

        if module_name is None:
            module_name = module.__name__
        if isinstance(module_name, str):
            module_name = [module_name]
        for name in module_name:
            if not force and name in self._module_dict:
                raise KeyError(f'{name} is already registered '
                               f'in {self.name}')
            self._module_dict[name] = module

为了保证UniAD代码能正确运行,允许UniAD的DiceCost类强制注册即可,也就是修改UniAD/projects/mmdet3d_plugin/core/bbox/match_costs/match_cost.py里DiceCost类的装饰器语句,增加force=True参数:

@MATCH_COST.register_module(force=True)
class DiceCost(object):

5.TypeError: cannot pickle 'dict_keys' object

File "./tools/test.py", line 261, in <module>
    main()
  File "./tools/test.py", line 231, in main
    outputs = custom_multi_gpu_test(model, data_loader, args.tmpdir,
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/uniad/apis/test.py", line 88, in custom_multi_gpu_test
    for i, data in enumerate(data_loader):
  File "/opt/conda/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 438, in __iter__
    return self._get_iterator()
  File "/opt/conda/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 384, in _get_iterator
    return _MultiProcessingDataLoaderIter(self)
  File "/opt/conda/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1048, in __init__
    w.start()
  File "/opt/conda/lib/python3.8/multiprocessing/process.py", line 121, in start
    self._popen = self._Popen(self)
  File "/opt/conda/lib/python3.8/multiprocessing/context.py", line 224, in _Popen
    return _default_context.get_context().Process._Popen(process_obj)
  File "/opt/conda/lib/python3.8/multiprocessing/context.py", line 284, in _Popen
    return Popen(process_obj)
  File "/opt/conda/lib/python3.8/multiprocessing/popen_spawn_posix.py", line 32, in __init__
    super().__init__(process_obj)
  File "/opt/conda/lib/python3.8/multiprocessing/popen_fork.py", line 19, in __init__
    self._launch(process_obj)
  File "/opt/conda/lib/python3.8/multiprocessing/popen_spawn_posix.py", line 47, in _launch
    reduction.dump(process_obj, fp)
  File "/opt/conda/lib/python3.8/multiprocessing/reduction.py", line 60, in dump
    ForkingPickler(file, protocol).dump(obj)
TypeError: cannot pickle 'dict_keys' object

解决办法参见 如何定位TypeError: cannot pickle dict_keys object错误原因及解决NuScenes数据集在多进程并发训练或测试时出现的这个错误-CSDN博客

6.protobuf报错 TypeError: Descriptors cannot not be created directly

Traceback (most recent call last):
  File "./tools/test.py", line 16, in <module>
    from projects.mmdet3d_plugin.datasets.builder import build_dataloader
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/__init__.py", line 5, in <module>
    from .datasets.pipelines import (
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/datasets/pipelines/__init__.py", line 6, in <module>
    from .occflow_label import GenerateOccFlowLabels
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/datasets/pipelines/occflow_label.py", line 5, in <module>
    from projects.mmdet3d_plugin.uniad.dense_heads.occ_head_plugin import calculate_birds_eye_view_parameters
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/uniad/__init__.py", line 2, in <module>
    from .dense_heads import *
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/uniad/dense_heads/__init__.py", line 4, in <module>
    from .occ_head import OccHead
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/uniad/dense_heads/occ_head.py", line 16, in <module>
    from .occ_head_plugin import MLP, BevFeatureSlicer, SimpleConv2d, CVT_Decoder, Bottleneck, UpsamplingAdd, \
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/uniad/dense_heads/occ_head_plugin/__init__.py", line 1, in <module>
    from .metrics import *
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/uniad/dense_heads/occ_head_plugin/metrics.py", line 10, in <module>
    from pytorch_lightning.metrics.metric import Metric
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/__init__.py", line 29, in <module>
    from pytorch_lightning.callbacks import Callback  # noqa: E402
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/callbacks/__init__.py", line 25, in <module>
    from pytorch_lightning.callbacks.swa import StochasticWeightAveraging
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/callbacks/swa.py", line 26, in <module>
    from pytorch_lightning.trainer.optimizers import _get_default_scheduler_config
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/trainer/__init__.py", line 18, in <module>
    from pytorch_lightning.trainer.trainer import Trainer
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 30, in <module>
    from pytorch_lightning.loggers import LightningLoggerBase
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/loggers/__init__.py", line 18, in <module>
    from pytorch_lightning.loggers.tensorboard import TensorBoardLogger
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/loggers/tensorboard.py", line 25, in <module>
    from torch.utils.tensorboard import SummaryWriter
  File "/opt/conda/lib/python3.8/site-packages/torch/utils/tensorboard/__init__.py", line 12, in <module>
    from .writer import FileWriter, SummaryWriter  # noqa: F401
  File "/opt/conda/lib/python3.8/site-packages/torch/utils/tensorboard/writer.py", line 9, in <module>
    from tensorboard.compat.proto.event_pb2 import SessionLog
  File "/opt/conda/lib/python3.8/site-packages/tensorboard/compat/proto/event_pb2.py", line 17, in <module>
    from tensorboard.compat.proto import summary_pb2 as tensorboard_dot_compat_dot_proto_dot_summary__pb2
  File "/opt/conda/lib/python3.8/site-packages/tensorboard/compat/proto/summary_pb2.py", line 17, in <module>
    from tensorboard.compat.proto import tensor_pb2 as tensorboard_dot_compat_dot_proto_dot_tensor__pb2
  File "/opt/conda/lib/python3.8/site-packages/tensorboard/compat/proto/tensor_pb2.py", line 16, in <module>
    from tensorboard.compat.proto import resource_handle_pb2 as tensorboard_dot_compat_dot_proto_dot_resource__handle__pb2
  File "/opt/conda/lib/python3.8/site-packages/tensorboard/compat/proto/resource_handle_pb2.py", line 16, in <module>
    from tensorboard.compat.proto import tensor_shape_pb2 as tensorboard_dot_compat_dot_proto_dot_tensor__shape__pb2
  File "/opt/conda/lib/python3.8/site-packages/tensorboard/compat/proto/tensor_shape_pb2.py", line 36, in <module>
    _descriptor.FieldDescriptor(
  File "/opt/conda/lib/python3.8/site-packages/google/protobuf/descriptor.py", line 561, in __new__
    _message.Message._CheckCalledFromGeneratedFile()
TypeError: Descriptors cannot not be created directly.
If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0.
If you cannot immediately regenerate your protos, some other possible workarounds are:
 1. Downgrade the protobuf package to 3.20.x or lower.
 2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower).

我的protobuf版本4.24.4太高了,降为3.20后就可以了:

pip install protobuf==3.20

  1. TypeError: expected str, bytes or os.PathLike object, not _io.BufferedReader

    Traceback (most recent call last):
    File "/opt/conda/lib/python3.8/site-packages/mmcv/utils/registry.py", line 69, in build_from_cfg
    return obj_cls(**args)
    File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/datasets/nuscenes_e2e_dataset.py", line 78, in init
    super().init(*args, **kwargs)
    File "/workspace/workspace_fychen/mmdetection3d/mmdet3d/datasets/nuscenes_dataset.py", line 131, in init
    super().init(
    File "/workspace/workspace_fychen/mmdetection3d/mmdet3d/datasets/custom_3d.py", line 88, in init
    self.data_infos = self.load_annotations(open(local_path, 'rb'))
    File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/datasets/nuscenes_e2e_dataset.py", line 152, in load_annotations
    data = pickle.loads(self.file_client.get(ann_file))
    File "/opt/conda/lib/python3.8/site-packages/mmcv/fileio/file_client.py", line 1014, in get
    return self.client.get(filepath)
    File "/opt/conda/lib/python3.8/site-packages/mmcv/fileio/file_client.py", line 535, in get
    with open(filepath, 'rb') as f:
    TypeError: expected str, bytes or os.PathLike object, not _io.BufferedReader

问题原因出现在高版本的mmdetection3d/mmdet3d/datasets/custom_3d.py里考虑了支持local_path读取文件,传入load_annotations()的就是个io句柄了:

def __init__(self,
                 data_root,
                 ann_file,
                 pipeline=None,
                 classes=None,
                 modality=None,
                 box_type_3d='LiDAR',
                 filter_empty_gt=True,
                 test_mode=False,
                 file_client_args=dict(backend='disk')):
        super().__init__()
        self.data_root = data_root
        self.ann_file = ann_file
        self.test_mode = test_mode
        self.modality = modality
        self.filter_empty_gt = filter_empty_gt
        self.box_type_3d, self.box_mode_3d = get_box_type(box_type_3d)

        self.CLASSES = self.get_classes(classes)
        self.file_client = mmcv.FileClient(**file_client_args)
        self.cat2id = {name: i for i, name in enumerate(self.CLASSES)}

        # load annotations
        if not hasattr(self.file_client, 'get_local_path'):
            with self.file_client.get_local_path(self.ann_file) as local_path:
                self.data_infos = self.load_annotations(open(local_path, 'rb'))
        else:
            warnings.warn(
                'The used MMCV version does not have get_local_path. '
                f'We treat the {self.ann_file} as local paths and it '
                'might cause errors if the path is not a local path. '
                'Please use MMCV>= 1.3.16 if you meet errors.')
            self.data_infos = self.load_annotations(self.ann_file)

根源是UniAD的UniAD/projects/mmdet3d_plugin/datasets/nuscenes_e2e_dataset.py里

在实现load_annotations()时默认是只支持使用ann_file是字符串类型,所以这里强制修改一下mmdetection3d/mmdet3d/datasets/custom_3d.py改回使用self.data_infos = self.load_annotations(self.ann_file)即可。

  1. RuntimeError: DataLoader worker (pid 33959) is killed by signal: Killed

前面的7个问题都解决后,如果NuScenes数据集是完整的且位置正确的话,运行下面的命令应该都可以运行:

./tools/uniad_dist_eval.sh ./projects/configs/stage1_track_map/base_track_map.py ./ckpts/uniad_base_track_map.pth 8

./tools/uniad_dist_eval.sh ./projects/configs/stage2_e2e/base_e2e.py ./ckpts/uniad_base_e2e.pth 8

但是可能会在循环读取数据时发生超时错误而导致dataloader所在进程被杀掉:

Traceback (most recent call last):
  File "/opt/conda/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1134, in _try_get_data
    data = self._data_queue.get(timeout=timeout)
  File "/opt/conda/lib/python3.8/multiprocessing/queues.py", line 107, in get
    if not self._poll(timeout):
  File "/opt/conda/lib/python3.8/multiprocessing/connection.py", line 257, in poll
    return self._poll(timeout)
  File "/opt/conda/lib/python3.8/multiprocessing/connection.py", line 424, in _poll
    r = wait([self], timeout)
  File "/opt/conda/lib/python3.8/multiprocessing/connection.py", line 936, in wait
    timeout = deadline - time.monotonic()
  File "/opt/conda/lib/python3.8/site-packages/torch/utils/data/_utils/signal_handling.py", line 66, in handler
    _error_if_any_worker_fails()
RuntimeError: DataLoader worker (pid 33959) is killed by signal: Killed.

查了一下,发现原因是配置文件projects/configs/stage1_track_map/base_track_map.py和projects/configs/stage2_e2e/base_e2e.py里的workers_per_gpu=8的设置对我们的服务器来说太多了,改为2后,再运行上面的命令可以顺利执行完毕。

相关推荐
桃花键神6 分钟前
AI可信论坛亮点:合合信息分享视觉内容安全技术前沿
人工智能
野蛮的大西瓜27 分钟前
开源呼叫中心中,如何将ASR与IVR菜单结合,实现动态的IVR交互
人工智能·机器人·自动化·音视频·信息与通信
CountingStars6191 小时前
目标检测常用评估指标(metrics)
人工智能·目标检测·目标跟踪
tangjunjun-owen1 小时前
第四节:GLM-4v-9b模型的tokenizer源码解读
人工智能·glm-4v-9b·多模态大模型教程
冰蓝蓝1 小时前
深度学习中的注意力机制:解锁智能模型的新视角
人工智能·深度学习
橙子小哥的代码世界1 小时前
【计算机视觉基础CV-图像分类】01- 从历史源头到深度时代:一文读懂计算机视觉的进化脉络、核心任务与产业蓝图
人工智能·计算机视觉
新加坡内哥谈技术2 小时前
苏黎世联邦理工学院与加州大学伯克利分校推出MaxInfoRL:平衡内在与外在探索的全新强化学习框架
大数据·人工智能·语言模型
fanstuck2 小时前
Prompt提示工程上手指南(七)Prompt编写实战-基于智能客服问答系统下的Prompt编写
人工智能·数据挖掘·openai
lovelin+v175030409662 小时前
安全性升级:API接口在零信任架构下的安全防护策略
大数据·数据库·人工智能·爬虫·数据分析
唐小旭3 小时前
python3.6搭建pytorch环境
人工智能·pytorch·python