二元交叉熵损失函数(Binary Cross Entropy Loss,BCELoss)是交叉熵损失函数(CrossEntropyLoss)的特殊情况

一直以来看到二元交叉熵损失函数(Binary Cross Entropy Loss,BCELoss)

还以为是很复杂的东西,原来其实是交叉熵损失函数(CrossEntropyLoss)的特殊情况,也就是二元交叉熵损失函数其实就是交叉熵损失函数。

推导如下:

对于多分类问题,交叉熵损失函数的一般形式如下:

CrossEntropyLoss ( input , target ) = − ∑ i = 1 C target i ⋅ log ⁡ ( softmax ( input ) i ) \text{CrossEntropyLoss}(\text{\textbf{input}}, \text{target}) = -\sum_{i=1}^{C} \text{target}_i \cdot \log(\text{softmax}(\text{\textbf{input}})_i) CrossEntropyLoss(input,target)=−∑i=1Ctargeti⋅log(softmax(input)i)

其中:

  • input 是模型的输出,是一个包含了未归一化的分数(logits)的向量。
  • target 是真实的标签,是一个表示类别的 one-hot 编码向量。
  • C 是类别的数量。
  • softmax(⋅) 是 softmax 函数,将输入的分数转换成概率分布。softmax(input )i表示取softmax运算后结果向量的第i个分量(标量,值)

对于二元分类问题,我们可以将多分类问题中的公式特殊化。假设只有两个类别(C = 2),我们可以将多分类交叉熵损失函数中的求和项简化为只有两项,如下:

CrossEntropyLoss ( input , target ) = − ( target 1 ⋅ log ⁡ ( softmax ( input ) 1 ) + target 2 ⋅ log ⁡ ( softmax ( input ) 2 ) ) \text{CrossEntropyLoss}(\text{\textbf{input}}, \text{target}) = -(\text{target}_1 \cdot \log(\text{softmax}(\text{\textbf{input}})_1) + \text{target}_2 \cdot \log(\text{softmax}(\text{\textbf{input}})_2)) CrossEntropyLoss(input,target)=−(target1⋅log(softmax(input)1)+target2⋅log(softmax(input)2))

在二元分类中,因为只有两个类别target1和target2,且概率和为1,因此,我们可以将上述公式中的 softmax(input )2替换为 1 - softmax(input )1,softmax(input )2替换为1 - softmax(input )1。得到如下形式:

BCELoss ( input , target ) = − ( target 1 ⋅ log ⁡ ( softmax ( input ) 1 ) + ( 1 − target 1 ) ⋅ log ⁡ ( 1 − softmax ( input ) 1 ) ) \text{BCELoss}(\text{\textbf{input}}, \text{target}) = -(\text{target}_1 \cdot \log(\text{softmax}(\text{\textbf{input}})_1) + (1 - \text{target}_1) \cdot \log(1 - \text{softmax}(\text{\textbf{input}})_1)) BCELoss(input,target)=−(target1⋅log(softmax(input)1)+(1−target1)⋅log(1−softmax(input)1))

在二元分类中,比如在推荐系统里,算出来的结果往往是 user 对 item 的评分预测,是个值,不是上面 input

向量,所以直接对这个评分预测套个Sigmoid,将最终的评分预测的范围整到表示概率的 (0, 1) 的范围里去,我感觉这样操作起来更方便。所以,我们可以将上式中的 softmax(input ) 1换成Sigmoid(y^uv) ,得到如下二元交叉熵损失函数的形式:

BCELoss ( input , target ) = − ( target ⋅ log ⁡ ( sigmoid ( y ^ u v ) + ( 1 − target ) ⋅ log ⁡ ( 1 − sigmoid ( y ^ u v ) ) ) \text{BCELoss}(\text{\textbf{input}}, \text{target}) = -(\text{target} \cdot \log(\text{sigmoid}(\hat{y}{uv}) + (1 - \text{target}) \cdot \log(1 - \text{sigmoid}(\hat{y}{uv}))) BCELoss(input,target)=−(target⋅log(sigmoid(y^uv)+(1−target)⋅log(1−sigmoid(y^uv)))

这个形式的损失函数是从多分类问题中的交叉熵损失函数推导得到的,并在二元分类问题中特殊化。

相关推荐
m0_751336391 小时前
突破性进展:超短等离子体脉冲实现单电子量子干涉,为飞行量子比特奠定基础
人工智能·深度学习·量子计算·材料科学·光子器件·光子学·无线电电子
美狐美颜sdk4 小时前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
DeepSeek-大模型系统教程4 小时前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
有Li4 小时前
通过具有一致性嵌入的大语言模型实现端到端乳腺癌放射治疗计划制定|文献速递-最新论文分享
论文阅读·深度学习·分类·医学生
郭庆汝4 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
IT古董4 小时前
【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
神经网络·算法·机器学习
小雷FansUnion6 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周6 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
叶子爱分享7 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜7 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习