二元交叉熵损失函数(Binary Cross Entropy Loss,BCELoss)是交叉熵损失函数(CrossEntropyLoss)的特殊情况

一直以来看到二元交叉熵损失函数(Binary Cross Entropy Loss,BCELoss)

还以为是很复杂的东西,原来其实是交叉熵损失函数(CrossEntropyLoss)的特殊情况,也就是二元交叉熵损失函数其实就是交叉熵损失函数。

推导如下:

对于多分类问题,交叉熵损失函数的一般形式如下:

CrossEntropyLoss ( input , target ) = − ∑ i = 1 C target i ⋅ log ⁡ ( softmax ( input ) i ) \text{CrossEntropyLoss}(\text{\textbf{input}}, \text{target}) = -\sum_{i=1}^{C} \text{target}_i \cdot \log(\text{softmax}(\text{\textbf{input}})_i) CrossEntropyLoss(input,target)=−∑i=1Ctargeti⋅log(softmax(input)i)

其中:

  • input 是模型的输出,是一个包含了未归一化的分数(logits)的向量。
  • target 是真实的标签,是一个表示类别的 one-hot 编码向量。
  • C 是类别的数量。
  • softmax(⋅) 是 softmax 函数,将输入的分数转换成概率分布。softmax(input )i表示取softmax运算后结果向量的第i个分量(标量,值)

对于二元分类问题,我们可以将多分类问题中的公式特殊化。假设只有两个类别(C = 2),我们可以将多分类交叉熵损失函数中的求和项简化为只有两项,如下:

CrossEntropyLoss ( input , target ) = − ( target 1 ⋅ log ⁡ ( softmax ( input ) 1 ) + target 2 ⋅ log ⁡ ( softmax ( input ) 2 ) ) \text{CrossEntropyLoss}(\text{\textbf{input}}, \text{target}) = -(\text{target}_1 \cdot \log(\text{softmax}(\text{\textbf{input}})_1) + \text{target}_2 \cdot \log(\text{softmax}(\text{\textbf{input}})_2)) CrossEntropyLoss(input,target)=−(target1⋅log(softmax(input)1)+target2⋅log(softmax(input)2))

在二元分类中,因为只有两个类别target1和target2,且概率和为1,因此,我们可以将上述公式中的 softmax(input )2替换为 1 - softmax(input )1,softmax(input )2替换为1 - softmax(input )1。得到如下形式:

BCELoss ( input , target ) = − ( target 1 ⋅ log ⁡ ( softmax ( input ) 1 ) + ( 1 − target 1 ) ⋅ log ⁡ ( 1 − softmax ( input ) 1 ) ) \text{BCELoss}(\text{\textbf{input}}, \text{target}) = -(\text{target}_1 \cdot \log(\text{softmax}(\text{\textbf{input}})_1) + (1 - \text{target}_1) \cdot \log(1 - \text{softmax}(\text{\textbf{input}})_1)) BCELoss(input,target)=−(target1⋅log(softmax(input)1)+(1−target1)⋅log(1−softmax(input)1))

在二元分类中,比如在推荐系统里,算出来的结果往往是 user 对 item 的评分预测,是个值,不是上面 input

向量,所以直接对这个评分预测套个Sigmoid,将最终的评分预测的范围整到表示概率的 (0, 1) 的范围里去,我感觉这样操作起来更方便。所以,我们可以将上式中的 softmax(input ) 1换成Sigmoid(y^uv) ,得到如下二元交叉熵损失函数的形式:

BCELoss ( input , target ) = − ( target ⋅ log ⁡ ( sigmoid ( y ^ u v ) + ( 1 − target ) ⋅ log ⁡ ( 1 − sigmoid ( y ^ u v ) ) ) \text{BCELoss}(\text{\textbf{input}}, \text{target}) = -(\text{target} \cdot \log(\text{sigmoid}(\hat{y}{uv}) + (1 - \text{target}) \cdot \log(1 - \text{sigmoid}(\hat{y}{uv}))) BCELoss(input,target)=−(target⋅log(sigmoid(y^uv)+(1−target)⋅log(1−sigmoid(y^uv)))

这个形式的损失函数是从多分类问题中的交叉熵损失函数推导得到的,并在二元分类问题中特殊化。

相关推荐
后端小肥肠4 分钟前
Coze 一键生成 AI 星座漫画,从 0 到 1 拿捏 10w + 流量!,小白可学
人工智能·aigc·coze
canonical_entropy22 分钟前
AI的集体反思:我们为什么未能预见到"可逆计算"的演进方向?
人工智能·低代码·aigc
mortimer2 小时前
Python 文件上传:一个简单却易犯的错误及解决方案
人工智能·python
IT_陈寒2 小时前
Vue3性能优化实战:这5个技巧让我的应用加载速度提升了70%
前端·人工智能·后端
机器之心2 小时前
英伟达50亿美元入股英特尔,将发布CPU+GPU合体芯片,大结局来了?
人工智能·openai
新智元3 小时前
芯片大地震,黄仁勋355亿入股!英特尔要为老黄造CPU,股价狂飙30%
人工智能·openai
阿然1653 小时前
首次尝试,95% 的代码都是垃圾:一位工程师使用 Claude Code 六周的心得
人工智能·agent·ai编程
martinzh3 小时前
RAG系统优化大揭秘:让你的AI从学渣变学霸的进化之路
人工智能
汀丶人工智能3 小时前
想成为AI绘画高手?打造独一无二的视觉IP!Seedream 4.0 使用指南详解,创意无界,效率翻倍!
人工智能
蚝油菜花4 小时前
万字深度解析Claude Code的Hook系统:让AI编程更智能、更可控|下篇—实战篇
人工智能·ai编程·claude