二元交叉熵损失函数(Binary Cross Entropy Loss,BCELoss)是交叉熵损失函数(CrossEntropyLoss)的特殊情况

一直以来看到二元交叉熵损失函数(Binary Cross Entropy Loss,BCELoss)

还以为是很复杂的东西,原来其实是交叉熵损失函数(CrossEntropyLoss)的特殊情况,也就是二元交叉熵损失函数其实就是交叉熵损失函数。

推导如下:

对于多分类问题,交叉熵损失函数的一般形式如下:

CrossEntropyLoss ( input , target ) = − ∑ i = 1 C target i ⋅ log ⁡ ( softmax ( input ) i ) \text{CrossEntropyLoss}(\text{\textbf{input}}, \text{target}) = -\sum_{i=1}^{C} \text{target}_i \cdot \log(\text{softmax}(\text{\textbf{input}})_i) CrossEntropyLoss(input,target)=−∑i=1Ctargeti⋅log(softmax(input)i)

其中:

  • input 是模型的输出,是一个包含了未归一化的分数(logits)的向量。
  • target 是真实的标签,是一个表示类别的 one-hot 编码向量。
  • C 是类别的数量。
  • softmax(⋅) 是 softmax 函数,将输入的分数转换成概率分布。softmax(input )~i~表示取softmax运算后结果向量的第i个分量(标量,值)

对于二元分类问题,我们可以将多分类问题中的公式特殊化。假设只有两个类别(C = 2),我们可以将多分类交叉熵损失函数中的求和项简化为只有两项,如下:

CrossEntropyLoss ( input , target ) = − ( target 1 ⋅ log ⁡ ( softmax ( input ) 1 ) + target 2 ⋅ log ⁡ ( softmax ( input ) 2 ) ) \text{CrossEntropyLoss}(\text{\textbf{input}}, \text{target}) = -(\text{target}_1 \cdot \log(\text{softmax}(\text{\textbf{input}})_1) + \text{target}_2 \cdot \log(\text{softmax}(\text{\textbf{input}})_2)) CrossEntropyLoss(input,target)=−(target1⋅log(softmax(input)1)+target2⋅log(softmax(input)2))

在二元分类中,因为只有两个类别target~1~和target~2~,且概率和为1,因此,我们可以将上述公式中的 softmax(input )~2~替换为 1 - softmax(input )~1~,softmax(input )~2~替换为1 - softmax(input )~1~。得到如下形式:

BCELoss ( input , target ) = − ( target 1 ⋅ log ⁡ ( softmax ( input ) 1 ) + ( 1 − target 1 ) ⋅ log ⁡ ( 1 − softmax ( input ) 1 ) ) \text{BCELoss}(\text{\textbf{input}}, \text{target}) = -(\text{target}_1 \cdot \log(\text{softmax}(\text{\textbf{input}})_1) + (1 - \text{target}_1) \cdot \log(1 - \text{softmax}(\text{\textbf{input}})_1)) BCELoss(input,target)=−(target1⋅log(softmax(input)1)+(1−target1)⋅log(1−softmax(input)1))

在二元分类中,比如在推荐系统里,算出来的结果往往是 user 对 item 的评分预测,是个值,不是上面 input

向量,所以直接对这个评分预测套个Sigmoid,将最终的评分预测的范围整到表示概率的 (0, 1) 的范围里去,我感觉这样操作起来更方便。所以,我们可以将上式中的 softmax(input ) ~1~换成Sigmoid(y^^^~uv~) ,得到如下二元交叉熵损失函数的形式:

BCELoss ( input , target ) = − ( target ⋅ log ⁡ ( sigmoid ( y ^ u v ) + ( 1 − target ) ⋅ log ⁡ ( 1 − sigmoid ( y ^ u v ) ) ) \text{BCELoss}(\text{\textbf{input}}, \text{target}) = -(\text{target} \cdot \log(\text{sigmoid}(\hat{y}{uv}) + (1 - \text{target}) \cdot \log(1 - \text{sigmoid}(\hat{y}{uv}))) BCELoss(input,target)=−(target⋅log(sigmoid(y^uv)+(1−target)⋅log(1−sigmoid(y^uv)))

这个形式的损失函数是从多分类问题中的交叉熵损失函数推导得到的,并在二元分类问题中特殊化。

相关推荐
尔呦7 分钟前
Prompt-Free Diffusion: Taking “Text” out of Text-to-Image Diffusion Models
深度学习
好悬给我拽开线11 分钟前
【】AI八股-神经网络相关
人工智能·深度学习·神经网络
2401_858120264 小时前
探索sklearn文本向量化:从词袋到深度学习的转变
开发语言·python·机器学习
算法金「全网同名」5 小时前
算法金 | 一个强大的算法模型,GPR !!
机器学习
江畔柳前堤5 小时前
CV01_相机成像原理与坐标系之间的转换
人工智能·深度学习·数码相机·机器学习·计算机视觉·lstm
qq_526099135 小时前
为什么要在成像应用中使用图像采集卡?
人工智能·数码相机·计算机视觉
码上飞扬5 小时前
深度解析:机器学习与深度学习的关系与区别
人工智能·深度学习·机器学习
super_Dev_OP6 小时前
Web3 ETF的主要功能
服务器·人工智能·信息可视化·web3
Sui_Network6 小时前
探索Sui的面向对象模型和Move编程语言
大数据·人工智能·学习·区块链·智能合约
别致的SmallSix6 小时前
集成学习(一)Bagging
人工智能·机器学习·集成学习