二元交叉熵损失函数(Binary Cross Entropy Loss,BCELoss)是交叉熵损失函数(CrossEntropyLoss)的特殊情况

一直以来看到二元交叉熵损失函数(Binary Cross Entropy Loss,BCELoss)

还以为是很复杂的东西,原来其实是交叉熵损失函数(CrossEntropyLoss)的特殊情况,也就是二元交叉熵损失函数其实就是交叉熵损失函数。

推导如下:

对于多分类问题,交叉熵损失函数的一般形式如下:

CrossEntropyLoss ( input , target ) = − ∑ i = 1 C target i ⋅ log ⁡ ( softmax ( input ) i ) \text{CrossEntropyLoss}(\text{\textbf{input}}, \text{target}) = -\sum_{i=1}^{C} \text{target}_i \cdot \log(\text{softmax}(\text{\textbf{input}})_i) CrossEntropyLoss(input,target)=−∑i=1Ctargeti⋅log(softmax(input)i)

其中:

  • input 是模型的输出,是一个包含了未归一化的分数(logits)的向量。
  • target 是真实的标签,是一个表示类别的 one-hot 编码向量。
  • C 是类别的数量。
  • softmax(⋅) 是 softmax 函数,将输入的分数转换成概率分布。softmax(input )i表示取softmax运算后结果向量的第i个分量(标量,值)

对于二元分类问题,我们可以将多分类问题中的公式特殊化。假设只有两个类别(C = 2),我们可以将多分类交叉熵损失函数中的求和项简化为只有两项,如下:

CrossEntropyLoss ( input , target ) = − ( target 1 ⋅ log ⁡ ( softmax ( input ) 1 ) + target 2 ⋅ log ⁡ ( softmax ( input ) 2 ) ) \text{CrossEntropyLoss}(\text{\textbf{input}}, \text{target}) = -(\text{target}_1 \cdot \log(\text{softmax}(\text{\textbf{input}})_1) + \text{target}_2 \cdot \log(\text{softmax}(\text{\textbf{input}})_2)) CrossEntropyLoss(input,target)=−(target1⋅log(softmax(input)1)+target2⋅log(softmax(input)2))

在二元分类中,因为只有两个类别target1和target2,且概率和为1,因此,我们可以将上述公式中的 softmax(input )2替换为 1 - softmax(input )1,softmax(input )2替换为1 - softmax(input )1。得到如下形式:

BCELoss ( input , target ) = − ( target 1 ⋅ log ⁡ ( softmax ( input ) 1 ) + ( 1 − target 1 ) ⋅ log ⁡ ( 1 − softmax ( input ) 1 ) ) \text{BCELoss}(\text{\textbf{input}}, \text{target}) = -(\text{target}_1 \cdot \log(\text{softmax}(\text{\textbf{input}})_1) + (1 - \text{target}_1) \cdot \log(1 - \text{softmax}(\text{\textbf{input}})_1)) BCELoss(input,target)=−(target1⋅log(softmax(input)1)+(1−target1)⋅log(1−softmax(input)1))

在二元分类中,比如在推荐系统里,算出来的结果往往是 user 对 item 的评分预测,是个值,不是上面 input

向量,所以直接对这个评分预测套个Sigmoid,将最终的评分预测的范围整到表示概率的 (0, 1) 的范围里去,我感觉这样操作起来更方便。所以,我们可以将上式中的 softmax(input ) 1换成Sigmoid(y^uv) ,得到如下二元交叉熵损失函数的形式:

BCELoss ( input , target ) = − ( target ⋅ log ⁡ ( sigmoid ( y ^ u v ) + ( 1 − target ) ⋅ log ⁡ ( 1 − sigmoid ( y ^ u v ) ) ) \text{BCELoss}(\text{\textbf{input}}, \text{target}) = -(\text{target} \cdot \log(\text{sigmoid}(\hat{y}{uv}) + (1 - \text{target}) \cdot \log(1 - \text{sigmoid}(\hat{y}{uv}))) BCELoss(input,target)=−(target⋅log(sigmoid(y^uv)+(1−target)⋅log(1−sigmoid(y^uv)))

这个形式的损失函数是从多分类问题中的交叉熵损失函数推导得到的,并在二元分类问题中特殊化。

相关推荐
Christo311 分钟前
TFS-2018《On the convergence of the sparse possibilistic c-means algorithm》
人工智能·算法·机器学习·数据挖掘
qq_5088234012 分钟前
金融量化指标--2Alpha 阿尔法
大数据·人工智能
黑金IT39 分钟前
`.cursorrules` 与 `.cursorcontext`:Cursor AI 编程助手时代下的“双轨配置”指南
人工智能
非门由也1 小时前
《sklearn机器学习——管道和复合估计器》回归中转换目标
机器学习·回归·sklearn
dlraba8021 小时前
基于 OpenCV 的信用卡数字识别:从原理到实现
人工智能·opencv·计算机视觉
IMER SIMPLE2 小时前
人工智能-python-深度学习-经典神经网络AlexNet
人工智能·python·深度学习
小憩-3 小时前
【机器学习】吴恩达机器学习笔记
人工智能·笔记·机器学习
却道天凉_好个秋4 小时前
深度学习(二):神经元与神经网络
人工智能·神经网络·计算机视觉·神经元
UQI-LIUWJ4 小时前
unsloth笔记:运行&微调 gemma
人工智能·笔记·深度学习
THMAIL4 小时前
深度学习从入门到精通 - 生成对抗网络(GAN)实战:创造逼真图像的魔法艺术
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·cnn