前置知识:讲解019-算法笔试 中处理输入和输出,讲解020-递归和master公式
- (1)左部分排好序,右部分排好序 ,利用merge过程让左右整体有序
- (2)merge 过程:谁小拷贝谁,直到左右两部分所有的数字耗尽
- (3)递归实现和非递归实现
- (4)时间复杂度O(n*logn)
- (5)需要辅助 数组,所以额外空间复杂度O(n)
- (6)归并排序 为什么比O(n^2)的排序快?因为比较行为没有浪费!
- (7)利用归并排序的便利性可以解决很多问题,例如归并分治
注意:有些资料说可以用原地归并排序 ,把额外空间复杂度 变成O(1) ,不要浪费时间去学。因为原地归并排序确实可以省空间,但是会把复杂度变成O(n^2)
- 对这个数组arr=[6,4,2,3,9,4] , 进行归并排序


呵呵哒的瞎想(可以不看):f(0,0)是6,f(1,1)是4,只有获得了这两个数值,才能合并成f(0,1),也就是[4,6]。而这个过程正好是后序遍历。左右中
cpp// 递归方法 void mergeSort(vector<int>& arr, int left, int right) { if (left == right) return; int mid = (left + right) / 2; mergeSort(arr, left, mid); // 左 mergeSort(arr, mid + 1, right); // 右 merge(arr, left, mid, right); // 中 }
- 挑其中一步来演示:把[2,4,6]和[3,4,9]合并(merge)








最后再刷回原数组

cpp
void merge(vector<int>& arr,int left, int mid, int right) {
int n = right - left + 1;
vector<int> help(n,0);
int i = 0;
int a = left;
int b = mid + 1;
while (a <= mid && b <= right) {
help[i++] = arr[a] <= arr[b] ? arr[a++] : arr[b++];
}
// 左侧指针,右侧指针,必有一个越界,另一个不越界
while (a <= mid) {
help[i++] = arr[a++];
}
while (b <= right) {
help[i++] = arr[b++];
}
for (i = 0; i <n; i++) { // 把 help 里面的数据重新刷回到原数组arr
arr[i+left] = help[i];
}
}
(1)归并排序递归版
cpp
// 递归方法
void mergeSort(vector<int>& arr, int left, int right) {
if (left == right) return;
int mid = (left + right) / 2;
mergeSort(arr, left, mid);
mergeSort(arr, mid + 1, right);
merge(arr, left, mid, right);
}
(2)归并排序非递归版



cpp
// 归并排序非递归版
// 时间复杂度:O(n * logn)
// 空间复杂度:O(n)
void mergeSort2(vector<int>& arr) {
int n = arr.size();
// 一共发生O(logn)次
for (int left, mid, right, step = 1; step < n; step <<= 1) {
// 内部分组merge,时间复杂度:O(n)
left = 0;
while (left < n) {
mid = left + step - 1;
if (mid + 1 >= n) {
// 已经没有右侧了
break;
}
// 有右侧,求右侧的右边界
right = min(left + (step << 1) - 1, n - 1);
// left ... mid mid+1 ... right
// left ... mid mid+1 ... right
// left ... mid mid+1 ... right
merge(arr,left, mid, right);
left = right + 1;
}
}
}
完整代码:
cpp
#include <iostream>
#include <vector>
using namespace std;
void merge(vector<int>& arr,int left, int mid, int right) {
int n = right - left + 1;
vector<int> help(n,0);
int i = 0;
int a = left;
int b = mid + 1;
while (a <= mid && b <= right) {
help[i++] = arr[a] <= arr[b] ? arr[a++] : arr[b++];
}
// 左侧指针,右侧指针,必有一个越界,另一个不越界
while (a <= mid) {
help[i++] = arr[a++];
}
while (b <= right) {
help[i++] = arr[b++];
}
for (i = 0; i <n; i++) { // 把 help 里面的数据重新刷回到原数组arr
arr[i+left] = help[i];
}
}
/*
归并排序递归版
假设left...right一共 n 个数
T(n) = 2 * T(n/2) + O(n)
a = 2,b = 2,c = 1
根据master公式,时间复杂度:O(n * logn)
空间复杂度:O(n)
*/
// 递归方法
void mergeSort(vector<int>& arr, int left, int right) {
if (left == right) return;
int mid = (left + right) / 2;
mergeSort(arr, left, mid);
mergeSort(arr, mid + 1, right);
merge(arr, left, mid, right);
}
// 归并排序非递归版
// 时间复杂度:O(n * logn)
// 空间复杂度:O(n)
void mergeSort2(vector<int>& arr) {
int n = arr.size();
// 一共发生O(logn)次
for (int left, mid, right, step = 1; step < n; step <<= 1) {
// 内部分组merge,时间复杂度:O(n)
left = 0;
while (left < n) {
mid = left + step - 1;
if (mid + 1 >= n) {
// 已经没有右侧了
break;
}
// 有右侧,求右侧的右边界
right = min(left + (step << 1) - 1, n - 1);
// left ... mid mid+1 ... right
// left ... mid mid+1 ... right
// left ... mid mid+1 ... right
merge(arr,left, mid, right);
left = right + 1;
}
}
}
int main() {
vector<int> arr = { 6,4,2,3,9,4};
int n = arr.size();
mergeSort(arr, 0, n - 1);
//mergeSort2(arr);
for (int i = 0; i < n; i++) {
cout << " " << arr[i] << " " << endl;
}
system("pause");
return 0;
}
完整图:

参考和推荐视频: