100127. 给小朋友们分糖果 II

给你两个正整数 nlimit

请你将 n 颗糖果分给 3 位小朋友,确保没有任何小朋友得到超过 limit 颗糖果,请你返回满足此条件下的 总方案数

示例 1:

复制代码
输入:n = 5, limit = 2
输出:3
解释:总共有 3 种方法分配 5 颗糖果,且每位小朋友的糖果数不超过 2 :(1, 2, 2) ,(2, 1, 2) 和 (2, 2, 1) 。

示例 2:

复制代码
输入:n = 3, limit = 3
输出:10
解释:总共有 10 种方法分配 3 颗糖果,且每位小朋友的糖果数不超过 3 :(0, 0, 3) ,(0, 1, 2) ,(0, 2, 1) ,(0, 3, 0) ,(1, 0, 2) ,(1, 1, 1) ,(1, 2, 0) ,(2, 0, 1) ,(2, 1, 0) 和 (3, 0, 0) 。

解析:

正难则反:我们先算出总方案数,在减去不合法的数即可。

有组合数学可以用隔板法进行求出总方案数。C(n+2,2)

在考虑不合法的数。

由容斥原理得:

考虑到三种情况:(这里要注意至少这个词语的理解)

1.当至少一个人不合法,那个人至少要limit+1个球,在用隔板法,在n-limit-1中经行分配 3*C(n- limit-1+2,2),由题意知道由三个人。

2.当至少有两个人不合法时,至少要消耗(limit+1)*2个球,分配的方案数为3⋅C(n−2⋅(limit+1)+2,2)

3.至少有三个人不合法时,分配的方案数为C(n−3⋅(limit+1)+2,2)

最后总方案数 - 不合法方案数即可。

在上面三种情况中有一些是重复被减去 所以后面要加上。

复制代码
class Solution {
public:
    long long c2(long long n){
        return n > 1 ?n*(n-1)/2:0;
    }
    long long distributeCandies(int n, int limit) {
        return c2(n+2) - 3*c2(n-limit+1) + 3*c2(n-2 *limit) - c2(n-3*limit - 1);
    }
};
相关推荐
gihigo19983 小时前
matlab 基于瑞利衰落信道的误码率分析
算法
foxsen_xia3 小时前
go(基础06)——结构体取代类
开发语言·算法·golang
foxsen_xia3 小时前
go(基础08)——多态
算法·golang
leoufung3 小时前
用三色 DFS 拿下 Course Schedule(LeetCode 207)
算法·leetcode·深度优先
im_AMBER5 小时前
算法笔记 18 二分查找
数据结构·笔记·学习·算法
C雨后彩虹5 小时前
机器人活动区域
java·数据结构·算法·华为·面试
MarkHD5 小时前
车辆TBOX科普 第53次 三位一体智能车辆监控:电子围栏算法、驾驶行为分析与故障诊断逻辑深度解析
算法
苏小瀚5 小时前
[算法]---路径问题
数据结构·算法·leetcode
月明长歌6 小时前
【码道初阶】一道经典简单题:多数元素(LeetCode 169)|Boyer-Moore 投票算法详解
算法·leetcode·职场和发展
wadesir6 小时前
C语言模块化设计入门指南(从零开始构建清晰可维护的C程序)
c语言·开发语言·算法