100127. 给小朋友们分糖果 II

给你两个正整数 nlimit

请你将 n 颗糖果分给 3 位小朋友,确保没有任何小朋友得到超过 limit 颗糖果,请你返回满足此条件下的 总方案数

示例 1:

复制代码
输入:n = 5, limit = 2
输出:3
解释:总共有 3 种方法分配 5 颗糖果,且每位小朋友的糖果数不超过 2 :(1, 2, 2) ,(2, 1, 2) 和 (2, 2, 1) 。

示例 2:

复制代码
输入:n = 3, limit = 3
输出:10
解释:总共有 10 种方法分配 3 颗糖果,且每位小朋友的糖果数不超过 3 :(0, 0, 3) ,(0, 1, 2) ,(0, 2, 1) ,(0, 3, 0) ,(1, 0, 2) ,(1, 1, 1) ,(1, 2, 0) ,(2, 0, 1) ,(2, 1, 0) 和 (3, 0, 0) 。

解析:

正难则反:我们先算出总方案数,在减去不合法的数即可。

有组合数学可以用隔板法进行求出总方案数。C(n+2,2)

在考虑不合法的数。

由容斥原理得:

考虑到三种情况:(这里要注意至少这个词语的理解)

1.当至少一个人不合法,那个人至少要limit+1个球,在用隔板法,在n-limit-1中经行分配 3*C(n- limit-1+2,2),由题意知道由三个人。

2.当至少有两个人不合法时,至少要消耗(limit+1)*2个球,分配的方案数为3⋅C(n−2⋅(limit+1)+2,2)

3.至少有三个人不合法时,分配的方案数为C(n−3⋅(limit+1)+2,2)

最后总方案数 - 不合法方案数即可。

在上面三种情况中有一些是重复被减去 所以后面要加上。

复制代码
class Solution {
public:
    long long c2(long long n){
        return n > 1 ?n*(n-1)/2:0;
    }
    long long distributeCandies(int n, int limit) {
        return c2(n+2) - 3*c2(n-limit+1) + 3*c2(n-2 *limit) - c2(n-3*limit - 1);
    }
};
相关推荐
地平线开发者4 分钟前
PTQ 量化数值范围与优化
算法·自动驾驶
sali-tec7 分钟前
C# 基于halcon的视觉工作流-章68 深度学习-对象检测
开发语言·算法·计算机视觉·重构·c#
测试人社区-小明22 分钟前
智能弹性伸缩算法在测试环境中的实践与验证
人工智能·测试工具·算法·机器学习·金融·机器人·量子计算
罗西的思考1 小时前
【Agent】MemOS 源码笔记---(5)---记忆分类
人工智能·深度学习·算法
qq_433554544 小时前
C++数位DP
c++·算法·图论
AshinGau4 小时前
Softmax 与 交叉熵损失
神经网络·算法
似水এ᭄往昔4 小时前
【C++】--AVL树的认识和实现
开发语言·数据结构·c++·算法·stl
栀秋6664 小时前
“无重复字符的最长子串”:从O(n²)哈希优化到滑动窗口封神,再到DP降维打击!
前端·javascript·算法
xhxxx4 小时前
不用 Set,只用两个布尔值:如何用标志位将矩阵置零的空间复杂度压到 O(1)
javascript·算法·面试
有意义5 小时前
斐波那契数列:从递归到优化的完整指南
javascript·算法·面试