100127. 给小朋友们分糖果 II

给你两个正整数 nlimit

请你将 n 颗糖果分给 3 位小朋友,确保没有任何小朋友得到超过 limit 颗糖果,请你返回满足此条件下的 总方案数

示例 1:

复制代码
输入:n = 5, limit = 2
输出:3
解释:总共有 3 种方法分配 5 颗糖果,且每位小朋友的糖果数不超过 2 :(1, 2, 2) ,(2, 1, 2) 和 (2, 2, 1) 。

示例 2:

复制代码
输入:n = 3, limit = 3
输出:10
解释:总共有 10 种方法分配 3 颗糖果,且每位小朋友的糖果数不超过 3 :(0, 0, 3) ,(0, 1, 2) ,(0, 2, 1) ,(0, 3, 0) ,(1, 0, 2) ,(1, 1, 1) ,(1, 2, 0) ,(2, 0, 1) ,(2, 1, 0) 和 (3, 0, 0) 。

解析:

正难则反:我们先算出总方案数,在减去不合法的数即可。

有组合数学可以用隔板法进行求出总方案数。C(n+2,2)

在考虑不合法的数。

由容斥原理得:

考虑到三种情况:(这里要注意至少这个词语的理解)

1.当至少一个人不合法,那个人至少要limit+1个球,在用隔板法,在n-limit-1中经行分配 3*C(n- limit-1+2,2),由题意知道由三个人。

2.当至少有两个人不合法时,至少要消耗(limit+1)*2个球,分配的方案数为3⋅C(n−2⋅(limit+1)+2,2)

3.至少有三个人不合法时,分配的方案数为C(n−3⋅(limit+1)+2,2)

最后总方案数 - 不合法方案数即可。

在上面三种情况中有一些是重复被减去 所以后面要加上。

复制代码
class Solution {
public:
    long long c2(long long n){
        return n > 1 ?n*(n-1)/2:0;
    }
    long long distributeCandies(int n, int limit) {
        return c2(n+2) - 3*c2(n-limit+1) + 3*c2(n-2 *limit) - c2(n-3*limit - 1);
    }
};
相关推荐
你的冰西瓜39 分钟前
C++ 中最短路算法的详细介绍
c++·算法·图论·最短路
zstar-_1 小时前
【算法笔记】6.LeetCode-Hot100-链表专项
笔记·算法·leetcode
Swift社区1 小时前
Swift 图论实战:DFS 算法解锁 LeetCode 323 连通分量个数
算法·swift·图论
<但凡.1 小时前
数据结构与算法之美:广义表
数据结构·c++·算法
前端极客探险家1 小时前
告别卡顿与慢响应!现代 Web 应用性能优化:从前端渲染到后端算法的全面提速指南
前端·算法·性能优化
程序员Xu2 小时前
【OD机试题解法笔记】连续出牌数量
笔记·算法·深度优先
CoovallyAIHub2 小时前
单目深度估计重大突破:无需标签,精度超越 SOTA!西湖大学团队提出多教师蒸馏新方案
深度学习·算法·计算机视觉
CoovallyAIHub2 小时前
从FCOS3D到PGD:看深度估计如何快速搭建你的3D检测项目
深度学习·算法·计算机视觉
偷偷的卷2 小时前
【算法笔记 day three】滑动窗口(其他类型)
数据结构·笔记·python·学习·算法·leetcode
北京地铁1号线2 小时前
Zero-Shot(零样本学习),One-Shot(单样本学习),Few-Shot(少样本学习)概述
人工智能·算法·大模型