100127. 给小朋友们分糖果 II

给你两个正整数 nlimit

请你将 n 颗糖果分给 3 位小朋友,确保没有任何小朋友得到超过 limit 颗糖果,请你返回满足此条件下的 总方案数

示例 1:

复制代码
输入:n = 5, limit = 2
输出:3
解释:总共有 3 种方法分配 5 颗糖果,且每位小朋友的糖果数不超过 2 :(1, 2, 2) ,(2, 1, 2) 和 (2, 2, 1) 。

示例 2:

复制代码
输入:n = 3, limit = 3
输出:10
解释:总共有 10 种方法分配 3 颗糖果,且每位小朋友的糖果数不超过 3 :(0, 0, 3) ,(0, 1, 2) ,(0, 2, 1) ,(0, 3, 0) ,(1, 0, 2) ,(1, 1, 1) ,(1, 2, 0) ,(2, 0, 1) ,(2, 1, 0) 和 (3, 0, 0) 。

解析:

正难则反:我们先算出总方案数,在减去不合法的数即可。

有组合数学可以用隔板法进行求出总方案数。C(n+2,2)

在考虑不合法的数。

由容斥原理得:

考虑到三种情况:(这里要注意至少这个词语的理解)

1.当至少一个人不合法,那个人至少要limit+1个球,在用隔板法,在n-limit-1中经行分配 3*C(n- limit-1+2,2),由题意知道由三个人。

2.当至少有两个人不合法时,至少要消耗(limit+1)*2个球,分配的方案数为3⋅C(n−2⋅(limit+1)+2,2)

3.至少有三个人不合法时,分配的方案数为C(n−3⋅(limit+1)+2,2)

最后总方案数 - 不合法方案数即可。

在上面三种情况中有一些是重复被减去 所以后面要加上。

复制代码
class Solution {
public:
    long long c2(long long n){
        return n > 1 ?n*(n-1)/2:0;
    }
    long long distributeCandies(int n, int limit) {
        return c2(n+2) - 3*c2(n-limit+1) + 3*c2(n-2 *limit) - c2(n-3*limit - 1);
    }
};
相关推荐
TL滕18 小时前
从0开始学算法——第十八天(分治算法)
笔记·学习·算法
LYFlied18 小时前
【每日算法】LeetCode 84. 柱状图中最大的矩形
前端·算法·leetcode·面试·职场和发展
CoderCodingNo19 小时前
【GESP】C++三级真题 luogu-B4414 [GESP202509 三级] 日历制作
开发语言·c++·算法
Liangwei Lin19 小时前
洛谷 P1955 [NOI2015] 程序自动分析
算法
zwjapple19 小时前
全栈开发面试高频算法题
算法·面试·职场和发展
不穿格子的程序员19 小时前
从零开始写算法——链表篇5:K个一组翻转链表 + 排序链表
算法·链表·分治
青鸟21819 小时前
从资深开发到脱产管理的心态转变
后端·算法·程序员
晨曦夜月19 小时前
笔试强训day7
开发语言·c++·算法
iAkuya19 小时前
(leetcode)力扣100 14合并区间(差分/排序)
算法·leetcode·职场和发展
leiming620 小时前
C++ 02 函数模板案例
开发语言·c++·算法