大语言模型-LLM简介

大语言模型如此火爆,查了些资料整理一下,做个初步的了解。

语言模型的发展从开始的统计方法到使用神经网络,再到现在通过使用Transformer架构的模型训练大量数据,理解文本规则和模式,同时随着训练数据和模型的扩大,语言模型的能力提升显著,此时大语言模型出现了-LLM。

相比于之前的明星模型-BERT,虽然大预言模型使用的架构和预训练任务相似,但参数数量级的提升使他们有了质的差别。BERT的参数为3.3亿 ,GPT-2为15亿 ,而GPT-3则有1750亿 参数。此时GPT-3相比之前的模型,就有解决少样本任务的能力了,这种能力可称为涌现能力

LLM的独特能力

上下文学习:语言模型在获得指令或任务示例时,通过上下文生成答案,此时不需要额外训练或更新参数。

指令微调:LLM可以处理未见过的任务,泛化能力强大。

推理能力:LLM可通过中间推理步骤的提示机制解决中间的任务得到最终的答案。

LLM的特点

模型规模大:参数通常在数十亿,甚至千亿规模,这也是大模型可以获取更多信息的基础。

预训练和微调:LLM使用大量无标签文本数据做预训练,获取通用的知识,再通过微调在单独任务重获得更好的效果。

上下文理解:可解决小模型对前文理解不足的问题。

支持多模态:LLM可支持图像、声音等内容的扩展。

现有的大模型

LLM大放异彩是从OpenAI发布ChatGPT开始的,后面还有Claude、PaLM、Bard等,但由于网络原因,并不好用,而且还需要国际支付以获取user key,国内使用不是很友好。

国内的LLM主要有文心一言、讯飞星火、通义千问等,分别由百度、讯飞、阿里推出。放开测试后只需手机号就能使用,但有些功能需要收费了。

LangChain

一个开源工具,帮助开发者调用大模型并应用于下游任务,其为LLM提供了通用接口,简化开发流程。

主要有六个标准接口:

Input/Output:用户输入及模型输出的结果

Data:将自由数据输入模型训练

Chain:链接多个LLM或组件

Memory:对每个用户生成短期记忆,加强对上文的理解

Agent:为LLM提供计算、检索等功能的支持

Callback:记录流程信息

相关推荐
第七序章3 天前
【C++STL】list的详细用法和底层实现
c语言·c++·自然语言处理·list
大千AI助手3 天前
TruthfulQA:衡量语言模型真实性的基准
人工智能·语言模型·自然语言处理·llm·模型评估·truthfulqa·事实性基准
什么都想学的阿超3 天前
【大语言模型 58】分布式文件系统:训练数据高效存储
人工智能·语言模型·自然语言处理
金井PRATHAMA3 天前
认知语义学隐喻理论对人工智能自然语言处理中深层语义分析的赋能与挑战
人工智能·自然语言处理·知识图谱
J_Xiong01173 天前
【VLMs篇】07:Open-Qwen2VL:在学术资源上对完全开放的多模态大语言模型进行计算高效的预训练
人工智能·语言模型·自然语言处理
苏苏susuus3 天前
NLP:Transformer之self-attention(特别分享3)
人工智能·自然语言处理·transformer
这张生成的图像能检测吗3 天前
(综述)视觉任务的视觉语言模型
人工智能·计算机视觉·语言模型·自然语言处理·视觉语言模型
GRITJW4 天前
注意力机制:从核心原理到前沿应用
自然语言处理
fanstuck4 天前
Prompt提示工程上手指南(六):AI避免“幻觉”(Hallucination)策略下的Prompt
人工智能·语言模型·自然语言处理·nlp·prompt
亚里随笔4 天前
小型语言模型:智能体AI的未来?
人工智能·语言模型·自然语言处理·llm·rlhf·agentic